#### Modelling of the ET inspection of bended parts in Steam Generators Tubes with the FEM software « FLUX<sup>®</sup> »



# EXTENDE DCDS

Fabrice FOUCHER, EXTENDE Bastien LAVIE, DCNS

# CONTENTS

- Context
- Description of the studied case
- Model
- Results
- Conclusion



# **EXTENDE** activity

CIVA

 $N \cdot D \cdot \Xi \mid 10$ 

#### **Distribution** CIVA

Sales

- Technical support
- Training courses

#### **Consulting:**

- Computation Studies : CIVA (UT/ET/RT) Flux(ET/MT)
- Development methodology
- Link to **innovation**







## **CONTEXT: QUALIFICATION**

DCNS: one of the world leader in the naval defence:

- Builds and supports submarines and surface warship.
- Embedded nuclear vessels in submarines:

DCNS

- Change in the regulation
- Required qualification of NDE processes used for in service inspections
- Steam Generators tubes type « K15 »
- Eddy Current inspection with a bobbin probe

Implies a sensitivity study to the influential parameters:

- Workpiece parameters, sensor parameters, flaw parameters, etc.
- In order to qualify the limit of the inspection process



### **CONTEXT: QUALIFICATION**

#### In this study:

L

- Parameter: Influence of the flaw position in the elbow of the SG tubes
- Mock-ups used for this qualification include only external notches (on the OD side)
- Supposed to be the worst case for the detection (lower amplitude signal) with the inspection procedure
- Purpose of the simulation study:
  - To confirm the above hypothesis
  - Comparison of flaw response in the OD and the ID

DCNS asked EXTENDE to work on this modelling study



#### DESCRIPTION OF THE STUDIED CASE



#### SG TUBES « K15 »

#### GV K15 : Bended parts

#### • Geometrical data:

- External diameter : 14 mm
- Thickness : 1.35 mm
- Bending radius: 38 mm

#### Material : INCOLOY 800

- Conductivity: 1 MS/m
- Non ferromagnetic





## **FLAWS UNDER STUDY**

- Two type of notches :
  - Longitudinal notches :
    - Length 10mm Width 0,2mm Depth 50%
  - Circumferential notches:
    - Width 0.2mm Angular extension 180° Depth 50%
- Position:

L

- Center of the elbow: Angular Position 45°
- Internal (ID) & External (OD)
  - To compare these 2 positions is the main goal of this study
- On the upper and inner surface



#### **PROBE « SAX »**

#### BOBBIN PROBE Type A138098B ZETEC



- 2 windings working both as transmitter and receiver
- Reception in differential mode
- Properties :

- External diameter: 9.8mm
- Frequencies : 170kHz and 35kHz



### **INSPECTION PROCEDURE**

- 2 Frequencies : F1= 170kHz & F3=35kHz
- Calibration of channels F1 and F3:
  - 3 Through-wall holes of 0.8mm diameter separated by 120° in the straight part of an incoloy tube having the same section as the SG tubes
- Channel C2 used for the detection
  - C2 is obtained after operating a frequency mixing on F1 and F3
  - Aims at removing the geometrical signal at the transition straight part/Elbow
  - Mathematical expression: Combination matrix [M] with 4 coefficients: C2= F1+[M]\*F3
  - [M] : coefficients calculated by the analysis software JADE
  - Calibration of C2 :
    - Same process as F1 and F3

#### **DESCRIPTION OF THE MODEL**





### **FLUX software**

- FEM commercial software for electromagnetics & thermal simulation
- Developped by Cedrat company



- Applications : Electrical Machines, Magnetic actuators, Heat treatment, etc.
- Applications in NDT :
  - Eddy Current Testing
  - Other electromagnetics methods (MPI, etc.)
- Release: 10.3 (current commerciale release during the study)



#### **FLUX model**

A lot of experience on Steam Generators tubes modelling



y known at the beginning of the study: :ation of numerical noise), etc. ed part of SGs

Flaws in the medium part (45°) :ries:

resented + Appropriate Boundary

odel



### **SIMULATIONS PERFORMED**

8 configurations with flaws habe been simulated :

- Longitudinal notches / Circumferential notches
- ID,OD, Upper surface, Inner surface



Ľ



The whole inspection procedure has been simulated:

- 2 Frequencies 35kHz & 170 kHz
- Calibration
- Frequency mixing



#### RESULTS



### RESULTS OBTAINED INNER SURFACE

# The channel C2, obtained after frequency mixing, has been analysed :

- Longitudinal Notches: ID / OD
- Circumferential Notches: ID / OD



L

| Flaw                                 | Chan<br>nel | Amplitude<br>(mV) | Phase<br>(degree)* |
|--------------------------------------|-------------|-------------------|--------------------|
| LIN -<br>Longitudinal Internal Notch | C2          | 1749.7            | 3.9                |
| LEN –<br>Longitudinal External Notch | C2          | 1483.2            | 6.8                |

| Flaw                                    | Chan<br>nel | Amplitude<br>(mV) | Phase<br>(degree)* |
|-----------------------------------------|-------------|-------------------|--------------------|
| CIN -<br>Circumferential Internal Notch | C2          | 1349.5            | -1.4               |
| CEN –<br>Circumferential External Notch | C2          | 1334.3            | 2.7                |

ENDE

\* Convention: Positive in the clockwise direction

### RESULTS OBTAINED UPPER SURFACE

# The channel C2, obtained after frequency mixing, has been analysed :

- Longitudinal Notches: ID / OD
- Circumferential Notches: ID / OD



L

| Flaw                                 | Chan<br>nel | Amplitude<br>(mV) | Phase<br>(degree)* |
|--------------------------------------|-------------|-------------------|--------------------|
| LIN -<br>Longitudinal Internal Notch | C2          | 1931.7            | 4.1                |
| LEN –<br>Longitudinal External Notch | C2          | 1732.0            | 7.1                |

| Flaw                                    | Chan<br>nel | Amplitude<br>(mV) | Phase<br>(degree)* |
|-----------------------------------------|-------------|-------------------|--------------------|
| CIN -<br>Circumferential Internal Notch | C2          | 1264.2            | -0.7               |
| CEN –<br>Circumferential External Notch | C2          | 1178.0            | 3.3                |

#### 

### **SYNTHESIS ON RESULTS**

- For the 4 sets of notches, the ID Notch response gives always a higher signal amplitude than the OD notch:
  - Longitudinal notches

L

- Inner Surface: + 18%
- Upper Surface: +11%
- Circumferential Notches
  - Inner Surface: +1%
  - Upper surface: + 7%

Results confirm the hypothesis of DCNS



### FIELD VISUALIZATION

Simulation also provides the visualization of induced fields:

- Check the zone coverage with the ET sensor
- Check the impact of parameters (frequency, materials) on induced currents
- Check the impact of flaws on eddy currents flowing



### SENSITIVITY TO THE MESH

To validate the model, a study of the sentivity of the model to the FEM mesh has been performed:



#### Nominal mesh validated EXTENDE

Ľ

### **EXPERIMENTAL VALIDATION**

Comparison with experimental acquisition : Channel C2

Case: Longitudinal Notches on the upper surface

| Défaut         | Simulation | Experiment | Difference |
|----------------|------------|------------|------------|
| ID - Amplitude | 1931.7mV   | 1912mV     | 1%         |
| ID- Phase      | 4.1        | 5          | 0.9        |
| OD - Amplitude | 1732mV     | 1656mV     | 4%         |
| OD - Phase     | 7.1        | 7          | 0.1        |

Very good agreement

L



#### CONCLUSION



### CONCLUSION

- Context: Qualification of ET inspection of SGs in embedded nuclear vessels
- Simulation study aims at evaluating the impact of the position of notches in the OD or in the ID in the bended part of the tube
- Modelling with the FEM code FLUX, accounting for the whole inspection procedure
- Very good agreement Experiment/Simulation
- Results confirm the hypothesis that the response of internal notches (ID) gives a stronger signal
- Allows to reduce the number of mock-up required for the qualification by only considering the worst case: Notches on the OD