EXPERIMENTAL STUDY FOR THE VALIDATION OF CIVA PREDICTIONS IN TOFD INSPECTIONS

Raphaële RAILLON1, Gwénaël TOULLELAN1
Michel DARMON1, Sébastien LONNE2

(1) CEA – LIST, France
(2) EXTENDE, France

ICNDE 2013
Long term validation work undertaken for 3 years by the CEA-LIST with EXTENDE

- **Pulse echo inspections**
 - monoelement and phased array probes
 - reference reflectors (Side Drilled Holes and Flat Bottom Holes)
 - corner echoes from notches
 - echoes from the specimen geometry…

- **TOFD inspections** with monoelement probes
 - Side Drilled Holes
 - now, notch edge diffraction echoes

- Results are made available on the EXTENDE web site
Main steps of the process of experimental validation of CIVA UT

- Define and perform experiments
- Describe accurately in CIVA the experimental inspection: determine the appropriate input parameter values and perform the CIVA computations
- Compare and interpret measured and simulated results

Outline

- Information about experiments and simulation procedures
- Examples of comparisons and considerations about CIVA input parameters and approximations of the models

For details on new models implemented in CIVA11, see presentation by Steve Mahaut later in this session
EXPERIMENTS AND SIMULATION PROCEDURE
Measure of the **echoes coming from top and bottom edge** of artificial notches of different heights

Several inspections with various PCSs:
- **various incident angles** on the notch edge
- **various positions of the edge** in the probe incident beams
EXPERIMENTS, REPRODUCIBILITY

Contact Ø6.35mm, 5MHz, L60°

PCS 70mm

Probe scanning

H = 15 mm
H = 12.5 mm
H = 10 mm
H = 7.5 mm
H = 5 mm

30 mm

Top edge

Bottom edge

Reproducibility: ok (discrepancies < 2 dB)

Reproducibility: not ok => all the bottom edge diffraction echo measurements are going to be performed again
SIMULATION PROCEDURE

- Specimen parameters in CIVA
 - Isotropic et homogeneous (ferritic steel)
 - L waves attenuation ignored
 - Velocities: time measurement between successive backwall echoes
 - \(V_L \): using a \(L_0^\circ \) probe at 5MHz
 - \(V_T \): using a contact \(T_0^\circ \) probe at 5MHz

Material Homogeneity: \(L0^\circ \) Cscan, variations of the backwall echo amplitude < 0.5 dB
- Contact probes currently used for TOFD inspections (Ø6.35mm, 5MHz, L45° and L60°)

- Experimental check of their resemblance

The measured SDH responses of the 2 probes are very close:
- amplitude discrepancy < 1dB
- same L refraction angle
• **Diameter and shape**: manufacturer information

• **L waves refraction angle in the specimen**: SDH calibration (pulse echo)

• **Wedge parameters**: measurement
 - L and T wave velocities with L0° and T0° probes
 - Wedge height and length with a sliding caliper
 - Index point using the calibration block n°1

• **Determination of the probe input signal** (centre frequency, phase, bandwidth): adjusted by matching the shapes of the measured and simulated Ascans of SDH specular L direct echoes (pulse echo mode)

Contact Ø6.35mm, 5MHz, L60°

| SDHØ2mm at 4mm depth | at 16mm depth | at 28mm depth |

CIVA input signal parameters well adjusted by matching the experimental and CIVA Ascans
To check the previous probe parameters:
comparison of the experimental and simulated inspection of the SDHs Ø2mm at different depths in pulse echo mode

Contact Ø6.35mm, 5MHz, L60°

Amplitude/SDH depth

Scanning echodynamic curves

Measured and simulated SDH responses of each probe are very close:
 • same amplitude decrease with the SDH depth
 • same L refraction angle
⇒ validation of the CIVA input parameters of the probes

Same validation made for the L45° probes
• Manufacturer information: artificial notches, aperture of 0.2mm

• **Longitudinal echoes coming from the top edges** of the notches

• **GTD** (Geometrical Theory of Diffraction)
 => not possible to take into account the notch aperture
• Neccessity to take into account the notch aperture (additionnal specular echo from the top edge)

• Simulation with the coupling code of CIVA-ATHENA-2D

Ravenscroft configuration
Top edge diffraction
Contact Ø10mm, 5MHz, L0°

Reference for the amplitude comparisons:
TOFD, L direct echo of a SDH Ø2mm at 20mm depth, PCS 70mm

The amplitude of this reference simulated with CIVA (SOV model) is reliable (experimental validation study, L direct echoes of SDHs responses obtained for TOFD inspection, ICNDE 2012)
EXPERIMENTAL VALIDATION AND DISCUSSION
Example of amplitude / PCS curve

- Crossing point above top edge, $\Delta = 4$ mm
- L axis crossing point **above** top edge
- L axis crossing point **close to** the top edge
- L axis crossing point **below** top edge
- Crossing point below top edge, $\Delta = 4$ mm

TOP EDGE DIFFRACTION
MOCK-UP AND COMPARISON CURVES
TOP EDGE DIFFRACTION
AMPLITUDE COMPARISON RESULTS, L60°

Contact Ø6.35mm, 5MHz, L60°
Reference: TOFD, L direct echo
SDH Ø2mm at 20mm depth, PCS 70mm

Amplitude/PCS curves
Notch height 15mm

Almost no effect of the notch aperture as expected (theta<130°)
Good agreement between measure and CIVA predictions
Contact Ø6.35mm, 5MHz, L60°

Reference: TOFD, L direct echo
SDH Ø2mm at 20mm depth, PCS 70mm

Amplitude/PCS curves

Notch height 10mm

Notch height 5mm

Again:
No effect of the notch aperture as expected according to Ravenscroft results
Good agreement between measure and CIVA predictions remains
TOP EDGE DIFFRACTION
AMPLITUDE COMPARISON RESULTS, L45°

Contact Ø6.35mm, 5MHz, L45°
Notch height 15mm

PCS 25mm
PCS 30mm
PCS 35mm
PCS 50mm

Reference: TOFD, L direct echo SDH Ø2mm at 20mm depth, PCS 40mm

Amplitude/PCS curves

Effect of the notch aperture on the L diffraction echo of the top edge for incident angles > 130°
When taken into account the notch aperture effect, a good agreement for the amplitudes (and Ascans) between measure and CIVA-ATHENA 2D predictions.
Discrepancies observed at the largest PCS:
may be due to approximation of the field made in CIVA for the echo computation.

Contact Ø6.35mm, 5MHz, L45°
Notch height 15mm

Reference: TOFD, L direct echo
SDH Ø2mm at 20mm depth, PCS 40mm

Amplitude/PCS curves

- Measured
- CIVA
- CIVA-ATHENA 2D
 (notch aperture 0.2mm)
CONCLUSION

- **Results of an experimental validation study** aiming at quantifying the reliability of CIVA UT predictions in the case of TOFD inspections were presented.

- **Experimental and simulation procedures** were described

- In the **case of artificial notches** and for some values of the incident angle: **necessity to take into account the notch aperture** for top edge echo computation

- **Good agreement** in the studied cases
 - with GTD model of CIVA where notch aperture has no effect (**case of real cracks**)
 - with coupling code of CIVA-ATHENA-2D where notch aperture has effect

- **Some discrepancies** (top edge not the zone of interest): simplification of the field for echo computation

- **Work in progress:**
 - 3D numerical models (FEM, BEM)
 - real description of the incident beam for echo response

The complete results of this study are available on the EXTENDE website
THANK YOU FOR YOUR ATTENTION !