

Feasibility study of the characterization of planar defects in a circular weld with Total Focusing Method

Souad BANNOUF, Sébastien LONNE, (EXTENE) Loïc DE ROUMILLY, Christophe GIBERT, (EDF CEDRE)

Summary

- 1. Context
- 2. Problematic
- 3. Experimental set-up
- 4. TFM imaging
- 5. Results in direct mode
 - i. On machined mock-up EDM notches
 - ii. On a piping sample with real fatigue crack
- 6. Results in corner echo mode
 - i. Profile reconstruction
 - ii. On machined mock-up with EDM notches
 - iii. Artifacts filtering
 - iv. On a piping sample with real fatigue crack
- 7. Conclusion

Context

Welded assemblies of the circuits of the Nuclear Power Generation Centers present various geometries.

Some geometries have limited access for probes on one side of the weld

 \rightarrow Area coverage or characterization limitations

Objectives :

- Investigate in a technological watch context the interest of the Total Focusing Method in these configurations
 - Detection
 - Characterization (volumic or planar defect)
 - Artifact/defect discrimination
 - Height sizing

Problematic

- Knowledge of the profile necessary for:
 - Reconstruction and interpretation of the results

Experimental set-up

Specimens

Machined mock-up :

- Ferritic steel
- EDM notches (from 1.5mm to 8mm height)

Piping sample:

- Ferritic steel
- Complex 3D geometry
- Thermal fatigue crack close the weld bead

Probe/Acquisition system

- Probe : 64 elements with 0,6mm pitch
- Frequency: 5MHz
- Acquisition System: MultiX from M2M

TFM imaging: principle

□ Step 1: FMC (Full Matrix capture) acquisition

- 1 element for transmission, N elements for reception
- Acquisition of a NxN matrix

□ Step 2 : TFM imaging reconstruction

• A posteriori **focusing** by coherent **summation** of all received signals $S_{ij}(t)$ for all points *P* of the zone to be imaged.

Algorithm : *T_{ij}(P)* time of flight calculation for all transmit/receive couples (*i*;*j*)

Reconstruction modes

• Reconstruction along the entire length

Machined mock-up: Results in *direct* mode

Probe's aperture does not fully cover the area to be controlled

Notch #	Theoretical height	LL simulated height (mm)	LL expermental height (mm)
1	3	3	3
2	1.5	1.5	1.4

Detection and height dimensioning are possible.

Good estimation of the height of the defect

Good agreement between simulation and experimental results

Machined mock-up: characterization in direct mode

Do the echoes observed belong to a planar defect or an inclusiontype volume defect?

Verification in *direct* mode by displacement the probe aperture

The break in the backwall echo associated with the diffraction echo indicates the presence of a breaking planar defect

Piping sample: characterization in *direct* mode

Experimental measurement on the cracked coupon show that TFM allows detection and characterization of a fatigue crack in *direct* mode

The measured height is equal to the actual height of the crack \pm 0.2 mm (height = 5mm)

Experiment – crack outside the probe aperture

Break in the backwall echo

PDF

Results in *corner echo* mode - profile reconstruction

- The knowledge of the backwall profile is necessary for accurate reconstruction of the TFM image in *corner echo* mode
- CIVA allows recontruction of specimen profile with TFM imaging
 - Provides good results when the probe/specimen coupling is good and when the geometry to be reconstructed is 2D

Machined mock-up: results with corner echo mode

1.5 mm notch

Simulation

Experiment

Determination of the most relevant reconstruction mode by simulation \rightarrow LTdT

Good estimation of the notch height

Good agreement between simulation and experiment

-6 dB drop amplitude sizing: OK

Artifact filtering

Artifact filtering:

- Option available since CIVA 2016
- Filters artifacts due to bad reconstruction of the backwall echo in corner echo mode reconstruction
- Elimination of the paths without physical sense

Without articfact filtering

With artifact filtering

Piping sample: results in corner echo mode

Presence of an acoustic signature at the crack position Reconstruction less « clear » than the one from the EDM notch

- → Complex geometry (twisted component)
- → Coupling probe/specimen non-optimal
- Characterization is possible but trickier

Without artifact filtering

With artifact filtering

Conclusion

- Implementation by simulation and experimental validation of an advanced methodology to detect and characterize thermal fatigue cracks with CIVA
- Good agreement between simulation and experiment
 - Detection :
 - In LL mode
 - Observation of the diffraction echo or rupture of the backwall echo
 - Characterization :
 - In LL mode : observation of the top diffraction echo + rupture of the backwall echo
 - In LTdT corner echo mode : reconstruction of the flaw on its entire height

Thank you for your attention

