

Optimize your radiographic inspection

Background

Specifying the primary parameters for a radiographic inspection to ensure an interpretable image is often difficult. Before taking X-rays, it is necessary to:

- Select the appropriate **X-ray** source.
- Determine the best **position and orientation** of the source with respect to the test specimen.
- Specify the correct **exposure time** to ensure a usable image.

An incorrect setting for any of these parameters almost always requires additional shots.

Benefits

Using CIVA for radiographic inspections, you can a priori identify the **key parameters** and specify their values for each source.

For example, it is possible to predict **the optical density** of the image obtained on the radiographic film, and thus defect visibility.

CIVA allows you to reduce the number of experimental trials, thereby reducing operator exposure to radiation.

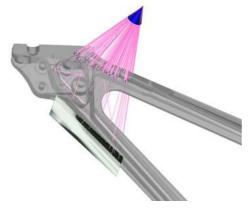
Optimize your radiographic inspection

Case study

Select the most suitable source for radiographic inspection

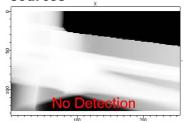
■ THE PROBLEM

The **thickness** and **density of the test specimen** are the primary considerations in choosing the X-ray source that will be used for the inspection.

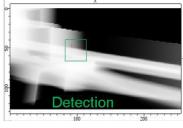

Use of a source that is **too powerful** results in an unusable saturated image.

In contrast, a source with insufficient energy prevents the photons from traversing the specimen.

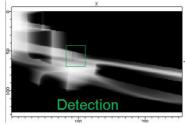
■ CIVA'S CONTRIBUTION


CIVA allows you to optimize your RT inspection strategy and protocols:

- **Test X-ray sources** to determine which yields the best result.
- Determine the effect of radiation on the inspection result.
- Analyze detection sensitivity.
- Choose the source and configuration that provides the optimal result.



CIVA estimation of photon paths through the test specimen from the source to the detector.


Results obtained for three different RT sources

Case 1 - Source 140kV / 5mA
The defect is not detected.

Case 2 - 200kV Source / 5mA The defect is detected, but contrast is poor.

Case 3 - 300kV Source / 5mA
The defect is easily detected.

www.extende.com

