

Validate inspection procedures

Background

As the responsible party for applying stringent inspection protocols, you must:

- Control and/or monitor the operational process carried out.
- Validate the inspection procedure to be confident that results will meet requirements.
- Provide clear feedback to the operator including alarms.
- Fabricate calibration specimens to test the adequacy and effectiveness of procedures.
- Anticipate the full range of operating conditions and know when variables are outside the acceptable bounds.

Benefits-

Using CIVA, it is possible to verify that inspection procedures will meet requirements **without having to bear the expense of extensive testing**.

CIVA is able to simulate complex inspections, making it possible to examine a much **wider range of parameters and conditions** than is possible with laboratory testing. For example, CIVA has extensive material libraries and allows detailed specifications for defects.

In addition, CIVA can **simulate different failure scenarios** and allows **evaluation of their impact** on inspection performance.

As a result of these capabilities, you are much better prepared for **unexpected conditions** encountered in the field and you can easily justify the acceptance (or not) of the result.

EXTENDE CIVA License

www.extende.com

Application Example N°6 EXTE N·D·E

Validate inspection procedures

Case study

Verify defect detection capability

THE PROBLEM

Laboratory experiments are typically used to verify that procedures meet the client's requirements.

However, on-site implementation often presents unforeseen challenges, for example causing hardware degradation that impacts performance.

Consider the case of a **sensor array**. Degradation or failure of one or more elements may or may not be acceptable. Evaluating the impact on performance is difficult to achieve without conducting a large-scale experimental studv.

With CIVA, however, it is possible to evaluate and compare results for different degradation scenarios, and determine under what conditions acceptable results can still be achieved.

CIVA'S CONTRIBUTION

- Determine the loss of sensitivity resulting from degradation of hardware.
- Manage the effects of degradation and malfunctioning hardware.
- Perform sensitivity studies and easily extract and compare variables for a wide range of scenarios.
- Avoid expensive, tedious and time-consuming testing.
- Help determine acceptance criteria.

Simulation results illustrating the degradation in performance resulting from failed elements in a phased array

Example 1: All elements of the array are functioning

Example 2: A subset of array elements are defective

Defective elements affect signal amplitude and time of flight, degrading performance and detection capability

www.extende.com

Le Bergson, 15 rue Emile Baudot 91300 Massv • France contact@extende.com Fax: +33 (0)9 72 13 42 68

PO BOX 461, Ballston Spa NY 12020 • USA contactus@extende.com Fax: +1 518 602 1368