

Use of CIVA to develop in a (very) short time a NDT procedure to resolve a bonding crisis related to the mirrors of the Extremely Large Telescope

Mathieu Ducousso

01 Extremely Large Telescope

02 Bonding Crisis 04 | Inspection of lateral face pads

05

Conclusions

03 | Inspection of back face pads

The Extremely Large Telescope

Why build larger (aperture) telescopes?

- Resolving power $\theta \sim 1,22 \frac{\lambda}{D}$
- Light gathering power $\sim A \propto D^2$
- Imaging speed for point sources $\propto D^4$

How the nebula NGC 3603 could be seen by three different telescopes: <u>Hubble Space Telescope</u>, <u>Very Large</u> <u>Telescope</u>, Extremely Large Telescope.

The Extremely Large Telescope (ELT)

- ESO Master of Works:
 - European Southern Observatory
 - 16 Member States
- Budget: 1.3 billion euros
- First light: 2028
- Site: Cerro Armazones (Atacama, Chile)
 - 3046 m above sea level
 - 23 km from the VLT at bird's eye view

A few figures

- M1: Diameter 39m
 - 798 Segments of 1.44m
 - Largest primary mirror in the world
 - Equivalent to ~20 VLT
- M2 and M3 class 4m
 - M2 is the largest convex mirror ever made
- M4: Diameter 2.4m
 - Largest adaptive mirror ever made
- M5: SiC plane of 2.8 x 2.2m.

The ELT M1 mirrors

- 931 (798 + 133) segments:
 - 6 sectors 133 segments + 1 spare sector
- 133 different forms:
 - Irregular hexagons 1.44 m tip to tip
 - All off-axis aspherical (max 300 µm PtV)
 - Bending radius 71270 3 mm
 - All different contour (10 mm)
 - Mechanical references machined at 50 microns
- Surface shape error:
 - Specified to the edge
 - < 25 nm RMS (including curvature)
 - < 7.5 nm RMS (excluding BF)
 - < 2 nm RMS roughness
- 51 interface pads (69 glue joints)
 - More than 64 000 joints on M1
 - 30 years life (seismic, thermal)

The Bonding crisis

Identification of the crisis

- Cavities ("voids") in the glue joints between the pads and the segment are detected
 - Critical impact on bonding in extreme conditions (temperature excursion, seismic)
- Highlight in Fall 2021
 - Few month before first delivery to ESO

Difficult detection

- Destructive detection
- Detection only in case of repair
- Low number of occurrences (4% of glue joints)

Complex process

- Several potential sources of air bubbles
- Process on the critical path of production

Request for NDT solution

- Must be :
 - operational in the few following months
 - compatible with the production line
 - Rapid
 - Ligth
 - realized by bonding operators, not trained to NDT
 - Analysis on a simple image

Solution based on phased-array imaging

Solution

Phased-array UT imaging with R-Theta portable encodeur

SAFRAN

Request for Extende to validate the proposed approach and to size the control using CIVA

Ultrasonic imaging of the back face pads

- Check an identify probe
- Find the optimal imaging mode

Validation of a phased-array proposed on catalogue

- Probe :
 - 11x11 square matrix
 - 17 MHz
 - Elementary size : 0,9x0,9 mm²
- Simulation of beam deviation

Simulation of echo detection

 17 MHz is enough to separate echoes from different interfaces

Department / Company / Date (menu "Insert / Header and footer" – "Insertion / Fn-tête et nied de page")

Ducousso et al., The International Journal of Advanced Manufacturing Technology, 2024

fran

Imaging mode

• TFM imaging in the volume of the bonding

- 3D imaging because of mirror thicknesses variation
- Required around 2Go per bonding

Sector scan + encodeur

- only a few MB
- Robust to mirror thicknesse

Comparison between an ultrasonic inspection (left, dB scale) and an image obtained from computed X-ray tomography of a representative bonding of the back face of the M1 mirror of ELT.

Department / Company / Date (menu "Insert / Header and footer" – "Insertion / En-tête et nied de page")

Ducousso et al., The International Journal of Advanced Manufacturing Technology, 2024

TFM imaging of the edge bonding using a tandem configuration

- Check the faisability
- If yes : Optimise the control, size the probes

CIVA Sizing of the control

Department / Company / Date (menu "Insert / Header and footer" – "Insertion / Fn-tête et nied de page")

Ducousso et al., The International Journal of Advanced Manufacturing Technology, 2024

SAFRA

Illustrations (2D simulations)

Illustrations (3D simulations)

Simulations of the detection

Simulation of the control : check of the equipment on the CAD

Department / Company / Date (menu "Insert / Header and footer" – "Insertion / En-tête et nied de nage")

Ducousso et al., The International Journal of Advanced Manufacturing Technology, 2024

fran

Probes sizing

Specifications for the probes

Nom du fichier				a 🖪
	Choix du signal	Gaussien		~
	Fréquence centrale	15	MHz	
Largeur de bande			V	
		60	% à -6	‡ dВ
Phase				
		0	0	
Pastille Focalisation Sabot Boîtier				
Pastille				
	Découpage	Linéaire		~
Découpage multi-éléments				
Ouverture totale				
	Longueur	47.97	mm	
	Elévation	20	mm	
Grille et espacement				
	Nombre d'éléments	64 🜲	d l	
	Espace inter-éléments	0.03	mm	
Dimensions des éléments				
	Largeur d'un élément	0.72	mm	
			-	
Pastille Focalisation Sabot Signal	Boîtier			
Pastille Focalisation Sabot Signal	Boîtier Type de surface	Cylindrique		~
Pastille Focalisation Sabot Signal	Boîtier Type de surface Rayon	Cylindrique 250	mm	~
Pastille Focalisation Sabot Signal	Boîtier Type de surface Rayon rientation de la génératrice	Cylindrique 250 () parallèle	mm	~

Pastille Fo	calisation S	abot Boîtier								
Géometrie	Matériaux									
Géometrie o	du sabot ——									
				Courbure	Plane					~
			Z		V					
		Z	LI		B	y Is				
	Longue	ur av.(L1)	38 /	nm		Larg	eur (L3)	22	mm	
	Longue	ur arr.(L2)	38 /	nm		Haut	eur (L4)	29	mm	
Angles —							L		, 	
	Réfrac	tion (R)	55 <i>deg</i>							
	Incid	ence (I) 3	5.943 deg							
Angles supp	olémentaires ·									
				Bigle (B)			0 deg	7		
			Désorie	ntation (D)			0 deg	7		
Type d'ond	es ———				Vitesses de	e Référence —				
	Туре	d'ondes 🔘 Onde	sL			Vitesse on	ides L	6545	m.s ⁻¹	
		Onde	sT			Vitesse on	dec T	3740		
						VICEBBE UN		57-10	<i>m.s</i> -	

Pastille	Focalisation	Sabot	Boîtier			
Type de surface				Type de surface	Cylindrique	
				Rayon	100	mm
			O	rientation de la génératrice	e parallèle	
					perpendiculaire	

Department / Company / Date (menu "Insert / Header and footer" – "Insertion / En-tête et pied de page")

Implementation

First test on a flat bottom hole (1 mm diameter)

Department / Company / Date (menu "Insert / Header and footer" – "Insertion / En-tête et pied de page")

Ducousso et al., The International Journal of Advanced Manufacturing Technology, 2024

fran

Implementation

Inspection of lateral-face bondings

Right : Simulation of the detection of 3 voids of 2mm diameter in the bonding.

Left : Experimental detection of the detection of 2 voids.

Department / Company / Date (menu "Insert / Header and footer" – "Insertion / Fn-tête et pied de page")

Ducousso et al., The International Journal of Advanced Manufacturing Technology, 2024

fran

Conclusions

Conclusions

- Civa software, with the expertise of Extende, allowed to validate and size NDT procedures for bonding inspection, using L0 and T55 waves
 - The use of simulation has enabled us to get it right first time, thereby reducing development costs and timescales.
 - Simulations are in good agreement with experiments
- Mirrors have been delivered on time

Thanks you!

Ducousso et al., The International Journal of Advanced Manufacturing Technology, 2024