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ABSTRACT. The simulation of ultrasonic NDT of carbon-fiber-reinforced epoxy composites (CFRP) 
is an important challenge for the aircraft industry. In a previous article, we proposed to evaluate the 
field radiated into such components by means of a homogenization method coupled to the pencil 
model implemented in CIVA software. Following the same goals, an improvement is proposed here 
through the development of an original homogenization procedure based on ray theory. 

 
 

INTRODUCTION 
 
The aircraft industry shows a growing interest for the simulation of ultrasonic non 

destructive testing, which gives powerful tools for analyzing experimental results and 
optimizing testing configurations. This paper deals with a study dedicated to the modeling 
of ultrasonic propagation in carbon-fiber-reinforced epoxy composites (CFRP), whose 
engineered shapes are getting more and more complex. 

The studied multilayers can be made of periodical stacking sequences of a carbon-
epoxy pattern (for instance a [(00/+45/-45/90)] pattern as in Fig. 1), the typical size of one 
layer being 100-300 µm. The unidirectional layers forming a pattern may also present 
different ratios and, due to the complex shapes, may not be parallel all together [1] (see 
Fig. 2). A realistic simulation must take into account both the effects of the material and 
those due to the complex geometry of the component. To fulfill these requirements, one has 
worked with the field computation capabilities of the software platform CIVA. This module 
is based upon the so-called pencil method, and dedicated to the computation of transmitted 
ultrasonic beams emitted by transducers into anisotropic or/and heterogeneous 
materials [2]. 
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FIGURE 1. Micrograph of a 1,2-mm-thick pattern containing four unidirectional layers. 



 

 
The approach adopted here consists in coupling this model with a homogenization 

method allowing to describe the layered structure into one homogeneous anisotropic 
effective medium for parallel layers, and into a heterogeneous medium made of several 
volumes (see Fig. 2-c) when the geometry of the component implies that layers are not 
exactly parallel. 

This work follows a previous study [1] in which a homogenization based on Postma's 
method had been applied, assuming static deformations (i.e. low frequency approximation). 
The analysis of the first results proved the interest of the approach but led us to work on 
improving the homogenization procedure itself. Our work is also based on a model that 
predicts the effective stiffness constants and attenuation (fiber multiple scattering coupled 
with epoxy viscoelastic losses) of a single layer. 

In the first part of this paper, we present a new homogenization method, based on ray 
theory, and called in the following Ray theory Based Homogenization (RBH). An example 
of a multilayer material simplified by this means is presented. In a second part, the 
capabilities of the method are demonstrated through field computations using different 
homogenization methods and computations with the whole layers. In the third part, 
comparisons with experiments are discussed. 

 
RAY THEORY BASED HOMOGENIZATION 

 
Introduction 

 
The Ray theory Based Homogenization (RBH) proposed here aims at obtaining the 

effective stiffness constants by synthesizing an effective slowness surface deduced from ray 
tracing modeling. This procedure is achieved considering the periodicity of the composites 
as described previously, i.e. only one pattern (period) of the component needs to be 
considered. The method can also be used when the pattern contains layers with different 
thicknesses, which allows to homogenize materials containing layers in unequal proportions 
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FIGURE 2. a- Carbon-epoxy piece with parallel and non-parallel layers (slope: 8°). b- Schematic view of the 
layers. c- Same component after homogenization: parallel parts are simplified with one homogeneous material 
whereas non-parallel ones are replaced by the same homogeneous materials whose symmetry axis is 
progressively rotated (0°, 2°, 4° and 6°). 
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FIGURE 3. Ray theory Based Homogenization: the follow-up of the energy path in one pattern (left) leads to 
an average energy direction AB=De supposed to be that in the homogenized equivalent material (right). 



 

(the representative pattern is then defined using the layer ratios as thicknesses). This is 
possible since the method does not depend on the order of the layers. 

The RBH method is carried out by following the energy ray path inside each ply of 
the pattern under consideration, which gives access to an average energy direction (as 
shown in Fig. 3). The relationship between phase and energy directions leads to the 
geometrical construction of an overall slowness surface describing an anisotropic 
homogeneous medium, characterizing the whole composite. An optimization method is 
then applied to obtain the associated effective stiffness tensor, which is then used in the 
simulations. These steps are described below. 

 
Energy Ray Path 

 
Let us consider an incident plane wave, represented by its slowness components 

along x- and y-axes (parallel to the interfaces), say Sx and Sy. The energy ray path is 
entering inside the studied pattern at point A and propagates toward an exit point B, defined 
in Fig. 3. The vector AB is supposed to be an average energy ray direction eD =AB in the 
homogenized material and is written as: 

 e
4

1m

e
(m)

z
e

(m)

m
4

m
m .

V
dt DV.VeBdecdAcAB ===+++= ∑∑

==1

e
(m) , (1) 

where c, d, and e are intersection points of the ray with the internal surfaces. The amounts 
tm, dm and e

(m)V  are respectively the energy propagation time, thickness and energy speed 
vector in the mth layer. In order to obtain e

(m)V , the Christoffel’s equation [4] is solved in 
Cartesian coordinates, the only unknown being the z-slowness (Sx and Sy are retained inside 
every layers, according to Descartes’ law). One has: 
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where the )(m
ijklC  are the mth layer stiffness constants, ρ the density of the component and 

m
ikG  the Christoffel’s matrix. Inside each layer, developing equation (2) leads to a 6th order 

polynomial, with six solutions among which three at most are suitable (i.e. with down 
going energy). By calculating the eigenvectors of the Christoffel’s matrix, the polarization 
vector um is obtained and the energy velocity vector writes: 
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Repeating such a process for each layer constituting the pattern leads to the vector De 
(normalized direction: e

ND ). 
 

Geometrical Building of the Slowness Surface 
 
For CFRP materials, the layers are constituted of the same material with 

disorientations around the z-axis. Hence, at normal incidence, (Sx,Sy) = (0,0) and the z-
slowness has the same value inside each layer, easily calculable using Christoffel’s 
equation. Thus, the very first point of the slowness surface P(0) is exactly known. For the 
3D reconstruction of the slowness surface, one considers successive planes rotating around 
z-axis and defined by base vector eϕ . 

In each plane (eϕ , z), successive points P(i) of the slowness surface are computed in 
an iterative way by applying the relationship between phase and energy directions: the 
normal to the effective slowness curve at any abscissa (Sx,Sy) is the averaged energy 



 

direction De evaluated with the method described above. The normal to De in the plane 
(eϕ , z) is the tangent to the curve under construction, say Te. If P(i-1) is known and if Te is 
evaluated at half step (i-1/2), the next point P(i) can be built (see Fig. 4). 

 
Effective Stiffness Constants 

 
A fast optimization procedure is then used in order to find the effective stiffness 

constants leading to the best fit of slowness surfaces. Assuming that the homogenized 
medium symmetry is known (for example transversely isotropic or hexagonal) a function 
derived from the Christoffel equation (2) is minimized, following [5]. 

 
EXAMPLE OF RBH AND COMPARISON WITH POSTMA’S METHOD 

 
RBH Homogenization of [(00/90/+45/-45)] Carbon-Epoxy 

 
Let us consider the example of a [(00/90/+45/-45)] carbon-epoxy composite whose 

pattern is constituted by layers of equal thickness. The RBH procedure has been applied to 
this material. The resulting QP slowness curve is shown on Fig. 5 and compared with the 
QP slowness curve predicted by applying Postma’s method. It can be seen that RBH 
predicts a greater sensitivity to phase direction angle than Postma’s method, and a greater 
deviation between phase and energy directions appears at large incidences. 

The set of stiffness constants describing this material is computed by means of the 
optimization procedure described above, and assuming hexagonal symmetry. Fig. 6 shows 
both the slowness curves, in xz-plane, built in the first step and the ones recomputed with 
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FIGURE 4. Ray theory Based Homogenization: iterative building of a synthesized slowness surface, using the 
relationship between phase and energy directions. 
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FIGURE 5. Example of QP slowness surfaces: comparison between Postma Homogenization (black squares 
on left, clear grey on right) and RBH (circles on left, dark grey on right). 2-D (left) and 3-D (right) slownesses 
show the energy divergence between the two methods, in the same phase direction. 



 

the effective stiffness constants. The curves are again compared with the ones obtained with 
Postma’s method, both sets of constants being indicated on the right part of the Fig.6. 

The major differences between the two homogenization methods appear for QP 
modes when the incident angle increases. In this case the wave number decreases more 
abruptly for RBH method. The influence of these differences on the computed fields in 
realistic testing configurations is studied in the next section. 

 
Comparison Between Postma’s and RBH Methods by Simulation of Transmitted 
Beams 

 
The final objective of the homogenization method is here the stiffness tensor of the 

homogenized material as input of transmitted fields computation. Therefore, the relative 
quality of the two homogenization methods can be evaluated by comparing the 
corresponding computed beams with the beam obtained without homogenization of the 
material (every layers being considered). Such comparisons have been performed on QP 
fields computed in CIVA in the case of a [(00/90/+45/-45)] composite structure constituted 
of 20 layers, the proportions of each orientation being respectively 50%, 10%, 20% and 
20%. In the case of non-homogenized material, only the first arrival contributions are taken 
into account (the contributions of inner multiple reflections are negligible). In addition, in 
order to allow quantitative comparisons in the three cases the attenuation is set to zero. 

Simulations of fields transmitted in a planar part by immersion transducers of varying 
frequency and under different incidences have been performed. On Fig. 7 are reported the 
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FIGURE 6. Left: slowness surfaces comparison between Postma Homogenization and optimized Ray theory 
Based Homogenization, for the 3 propagation modes. Right: effective stiffness constants of the 2 methods 
based on orthotropic assumption of the homogenized component.  
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FIGURE 7. QP mode echodynamics computed by CIVA software. RBH and Postma homogenizations are 
compared to a 20 layers result at normal incidence, 5 MHz transducer frequency. 



 

amplitude distributions of uz (uz being the displacement component normal to the surface) 
through the 20 layers homogenized or not, obtained at 5 MHz, at normal incidence and 
along x-axis.  

Fig. 8 shows the variation of the maximal amplitude of uz at an incidence of 0° and 
4°, versus frequency. It can be seen that RBH predictions are much closer to the results 
computed by taking into account the multi-layered structure than Postma’s homogenization 
predictions. The discrepancies observed when applying Postma’s method increases with 
frequency and incident angle. 

 
EXPERIMENTAL VALIDATION 

 
A set of experiments have been performed in order to validate the approach on 

realistic complex situations. The component under study is shown on Fig. 2: its incoming 
surface presents two horizontal areas with two different thicknesses, separated by a tapered 
region in which the number of layers increases progressively. An immersion transducer 
(diameter 12.7mm, frequency 5MHz) is used at vertical incidence. Four different positions 
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FIGURE 8. Z-displacement fields maxima computed by Champ-Sons. Amplitudes evolution with the 
transducer frequency (MHz) when the QP incident angle is null (left) or 4° (right). 
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FIGURE 9. a- Definition of the four positions of the transducer. b- Transmitted fields (vertical particle 
displacements) measured for the different positions, beam width and height in mm being indicated. c- 
Simulated fields using RBH. 



 

I, II, III and IV have been defined (see Fig. 9-a) for the transducer in order to cover the 
various situations occurring during the real inspection of such a geometry. Positions I and 
IV, on the horizontal parts, correspond to normal incidence (horizontal surface) whereas 
positions II and III, over the slope, correspond to an 8° incident angle. For each position, 
the field transmitted through the piece is measured by scanning a receiver positioned at the 
back wall surface. This receiver is small enough so that its diffraction is negligible, and the 
received signal evolution can be directly compared to calculations of the vertical 
component of the displacement field. 

Fig. 9-b shows the transmitted fields measured in the four configurations, which are 
compared to the computed field using homogenized media with RBH method in Fig. 9-c. 
These simulations have been performed by considering that the material under the slope can 
be defined by a small number of areas constituted of the same homogenized anisotropic 
material but with disoriented axes, as in Fig. 2. The horizontal deflection of the beam, say 

MAXX∆  (i.e. the distance between the axis of the transducer and the center of the outgoing 
beam) is correctly predicted. The good agreement between computations and experiments 
validates the latter assumption, as it validates the homogenization approach. 

Once again, comparisons with Postma’s method have been done. Fig. 10 shows a 
comparison between experimental measurements and computation results with RBH and 
Postma. The transmitted field at the back wall surface is computed or measured along x-
axis for every transducer positions, the x-coordinate in the graph being evaluated relatively 
to the transducer x-position, which allows to superimpose the different results. Again, the 
beam deviations for positions II and III are observed and predicted by both homogenization 
methods. In Fig. 10, the similar shape of the three graphs permits to validate the approach 
consisting in replacing the whole layers with a homogenized material. The improvements 
made by the RBH method are also emphasized: the absolute amplitudes predicted using this 
homogenization are closer to the fields measured than the ones predicted using Postma’s 
method. In order to underline this, the maximum amplitude of each curve has been reported 
on the graph of Fig. 11. This amount is plotted as a function of the position of the 
transducer and for each configuration (measured, Postma and RBH). Since one aims here at 
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FIGURE 10. Transmitted fields along x-axis (a- Postma’s approach, b- experiment, and c-RBH approach). The 
four positions of the transducer are superimposed, in a coordinate system relative to the transducer. 
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FIGURE 11. Evolution of the maximum amplitudes for the field transmitted through the component at the 4 
positions described on Fig. 9. Solid line = experiment, dashed line = computation with RBH homogenization, 
dotted line = computation with Postma’s homogenization. 



 

comparing the relative evolution of the maximum amplitudes, the three curves have been 
normalized with respect to their value at position I. It can be seen that a better agreement is 
found between RBH and experiment than between Postma and experiment. 

 
CONCLUSION 

 
In this paper we present a modeling approach based on homogenization for predicting 

ultrasonic fields propagating in multilayered CFRP. A homogenization method based on 
ray theory is proposed. The advantages of this method relatively to the more classical 
Postma’s method are estimated both theoretically and experimentally. At last the reliability 
of ultrasonic fields predictions in complex situations is shown by comparing computations 
results and experimental measurements. 
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