

Influence of Stress Corrosion Crack Morphology on Ultrasonic Examination Performances

- 7th ICNDE in Relation to Structural Integrity for Nuclear and Pressurized Components -

O. Dupond – EDF R&D/Materials and Mechanics of Components Department T. Fouquet – EDF R&D/ Neutronics simulation, information technologies and scientific calculations J. Tirira – CEA/LIST, Centre de Saclay

eDF

Summary	
Juillialy	

- Context and objectives
- ✓ Defects description
- ✓ Simulation codes
 - ✓ Simulation of UT inspection in CIVA (CEA)
 - ✓ ATHENA FEM (EDF)
 - ✓ Hybrid code (EDF-CEA)
- ✓ Results

Context and objective

UT simulation : more and more used to ...

- ✓ Understand phenomena
- ✓ Help data interpretation
- ✓ Method qualification performance demonstration
- Conception / design of new methods
- ✓ 'Virtual testing' ...

Stress corrosion cracking : intergranular propagation

- ✓ Multi faceted
- ✓ Branched
- Objective
- To study modelling of complex flaw scattering
- Limits of the study : isotropic and homogeneous material, CW.

Defects description	
---------------------	--

✓ Multi faceted defects

✓ Branched defects

Simulation of UT inspection in CIVA (CEA)

Computation of the scattered wave

1. Field

Surface integral over probe's aperture

2. Flaw scattering

Diffraction coefficient depending upon the flaw (void, inclusion) or inspection type (pulse echo or TOFD) :

- *Kirchhoff* approximation for specular or corner echoes
- **GTD** (Geometrical Theory of Diffraction) for tip edges echoes
- Born for solid inclusions

3. Synthesis at Tx/Rx Reciprocity principle

Simulation of UT inspection in CIVA

- corner echoes
- converted modes

Echo at Tx/Rx = sum of individual echoes • No multiple scattering between flaws

Developments achieved in CIVA for complex and branched cracks (available in CIVA10, end 2009)

- parametric tools for definition of branched flaws
- internal reflections and mode conversions inside branched flaws
- (self)shadowing effects between parts of the flaw

ATHENA finit elements code (EDF)

- ✓ 2D finite elements code for elastodynamics
- ✓ Modelling of complex defects by the fictitious domain method (multi faceted, branched defect implemented)
- \checkmark Contact or immersion transducers
- ✓ Anisotropic and heterogeneous structure
- ✓ Beam propagation and beam/defect interactions with all mode conversions

7 th ICNDE, Yokohama - may 12-14, 2009

Hybrid code (EDF-CEA)

See EDF-CEA paper in Review of Progress in QNDE, 2004 by N. Gengembre et all.

Multi faceted defect scattering : experimental results for CW 45° (B Scan images)

✓ Sensitivity to the number of facets : good agreement between experiment and modelling

Multi faceted defects scattering : modelling results for CW 45°

✓ Good agreement between experiment and modelling

✓ Comparison between experiments and modelling (CW45°)

	Experiment d1	CIVA d1	ATHENA d1	Hybrid d1	Experiment d2	CIVA d2	ATHENA d2	Hybrid d2
Defect	A (dB)	A (dB)	A (dB)	A (dB)	A (dB)	A (dB)	A (dB)	A (dB)
А	3.0	4.5	2.5	4.0	4.0	4.5	2.5	4.0
В	4.0	5.0	4.0	5.0	4.5	4.5	4.5	4.5
C	1.0	0.5	1.5	1.0	6.5	8.0	5.5	7.5
D	4.0	5.5	3.0	4.5	3.0	5.0	2.5	3.5

✓ Good agreement between modelling and experimental results

✓ Sensitivity to the direction of inspection observed for the defect C

Use of modelling for the understanding of the effects

✓ CIVA software : mode decomposition

Use of modelling for the understanding of the effects

Instant 26 (t = 13.2184 µs

edf

Instant 20 (t = 10.168 µs) 7 th ICNDE, Yokohama - may 12-14, 2009

Use of modelling for the understanding of the effects

✓ ATHENA beam propagation decomposition for defect D

edf

7 th ICNDE, Yokohama - may 12-14, 2009

✓ Modelling B scan images show all echoes observed experimentaly

Results for branched defects

Echo	Test	CIVA	ATHENA	Hybrid	Defect
Defect E					90°
Corner	3.0	4.5	2.5	4.0	
Left branch	-8.0	-9.0	-11.0	-9.0	
Right branch	7.0	5.5	4.0	5.0	
Defect F					90°
Corner	3.0	1.5	-2.5	2.0	
Left branch	-8.0	-10.5	-10.5	-13.5	
Right branch	14.0	14.0	12.5	13.5	O)
Defect G					
Corner	0.5	1.0	-1.5	1.5	
Left branch	-11.0	ND*	-10.0	ND*	10
Right branch	-9.0	-9.0	-10.5	-9.5	a
Inter branch	3.4	-2.0	1.2	1.0	

* ND : echo not detected

 \checkmark Some significant differences observed for :

- ✓ ATHENA : transducer description + 2D
- ✓ CIVA doen't take into account multiple reflection

- ✓ ATHENA 2D : complex defect scattering validated
- CIVA : multiple reflection not correctly reproduced
- \checkmark Hybrid code : sensitivity to the box orientation identified

PERSPECTIVES

- ✓ Validation for shear waves under progress
- ✓ New hybrid code (2D and 3D)
- ✓ 3D approach (experimental and modelling)

