

SIMULATION OF ULTRASONIC, EDDY CURRENT AND RADIOGRAPHIC TECHNIQUES WITHIN THE CIVA SOFTWARE PLATFORM

Ph. DUBOIS*, S. LONNÉ*, F. JENSON** and S. MAHAUT**

* EXTENDE, 86 rue de Paris, 91400 ORSAY, France ** CEA, LIST, F-91191 Gif-Sur-Yvette, France

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry
- **ET simulation**

L

- Simulation with combined flaws
- GMR's sensors
- **RT** simulation
 - Generalities
 - Weld inspection
- Conclusion

Introduction

Use of simulation in NDT

- Design of new methods and probes (e.g. phased arrays)
- Qualification of methods, performance demonstration
- Interpretation of complex results, automatic diagnosis
- « Virtual testing » at the designing stage of parts
- Training

Development of the CIVA software by CEA-LIST and partners

- Multi-technique platform: UT, ET and RT
- Used by more than 130 companies in the world
- Validation within international benchmarks

Distributed by EXTENDE CIVA

This presentation: new skills in UT, RT, ET simulation with CIVA 10 (to be released by end of June)

=XT=ND=

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry
- **ET** simulation

- Simulation with combined flaws
- GMR's sensors
- **I** RT simulation
 - Generalities
 - Weld inspection
- **Conclusion**

Modeling Approach

1. Structure description using Voronoï diagrams

2. Description of elastic properties

- Isotropic elastic material properties
- Velocity values (VL) for each cells are fixed randomly by using a uniform distribution

Radiated Beam simulation

Focused probe, 1 MHz, 0° L-waves

Voronoï description : 800 cells (mean size ~10 mm), DVL=3%

Back-wall echo measurement for various probe positions Back-wall echo measurement setup L0 1 MHz **Inspection setup** H_{water}=150 mm P_{focus}=70mm **Displacement: 0-250 mm** 5canning **Back-wall echo simulation** 68.5 # cells = 1500 Voronoi diagram Mean cell size $\approx 12 \text{ mm}$ 400 **Position** Position 100 External radius : 417 mm Time Time Probe displacement along the cylinder axis $\Delta V_{I} = 3\%$ $\Delta V_L = 0\%$ EXTENDE page 8

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry
- **ET** simulation

- Simulation with combined flaws
- GMR's sensors
- **I** RT simulation
 - Generalities
 - Weld inspection
- I Conclusion

UT: Flaw detection in 3D CAD test pieces

- UT simulation accounts for :
 - Longitudinal + Transverse + Converted Modes
 - Echoes of the specimen boundaries + interaction with the flaw

UT: Flaw detection in 3D CAD test pieces

UT simulation result with back wall + flaw echoes (all L and T modes)

UT: Flaw detection in 3D CAD test pieces

Interpretation: comparison between computation with and without the flaw

UT simulation WITHOUT flaw : I only geometrical echoes

UT simulation WITH a flaw: geometrical echoes + echoes from the flaw

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry

ET simulation

L

- Simulation with combined flaws
- GMR's sensors

I RT simulation

- Generalities
- Weld inspection

Conclusion

- CIVA 10 allows defining several flaws in a given configuration
- Interactions between various flaws are accounted for
- Typical configurations are as following:

SIMULATION example

- Frequency 100 kHz
- Inconel plate
- Flaw n°1 : 100% thickness
- Flaw n°2 : 50% thickness

N-D-E | 10

Experimental Validation

Experimental Validation

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry

ET simulation

- Simulation with combined flaws
- GMR's sensors

I RT simulation

- Generalities
- Weld inspection

I Conclusion

Principles of GMR (Giant Magneto Resistance) sensors

SIMULATION of GMRs with CIVA software

SIMULATION of GMRs with CIVA software

SIMULATION of GMRs with CIVA software

Inspection settings:

- Flaw = 100 µm3
- Frequency = 1 MHz
- Current foil = 10x30 mm²
- Sensor's lift-off = 200 μm

- Good agreement simulation/experiment
- ECT response shape varies according to the orientation of the GMR : potential defect characterization

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry
- **ET** simulation

- Simulation with combined flaws
- GMR's sensors

RT simulation

- Generalities
- Weld inspection

Conclusion

RT: Generalities

Background

- Mix of two model implemented since CIVA 9 in order to enable in CIVA the best features in Gamma and X-Ray
- Develop a Collaborative plate-form to integrate a new code architecture global to Radiola's partners (European project).
- Create a powerful global RT simulation software combining the best software already developed in France
 - Part of Radiola's project has been integrated onto CIVA 10.0 version

CIVA 10 and further

- New tools for the Monte-Carlo simulation:
 - Parallelization of the Monte-Carlo computation is now available
 - Possibility to re-load a previously computed Monte-Carlo result
- Integration of new visualization tools
- I Thanks to the new architecture, integration of new kinds of specific detectors is quite easy for the future

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry
- **ET** simulation

- Simulation with combined flaws
- GMR's sensors

RT simulation

- Generalities
- Bi-Metallic Weld inspection

Conclusion

Bi-metallic weld with a complex crack

Bi-metallic weld with a complex crack

Introduction

UT simulation

- Coarse grain structures
- 3D CAD geometry
- **ET** simulation

- Simulation with combined flaws
- GMR's sensors
- **I** RT simulation
 - Generalities
 - Bi-Metallic Weld inspection

Conclusion

Conclusion

- Simulation codes for UT, ET and RT are gathered within the same software platform: CIVA
- NDT realistic inspections can be simulated within the CIVA platform for those three techniques
- CIVA 10 version released by end of June 2010

http://www-civa.cea.fr

http://www.extende.com

- Simulation capabilities widely extended in this major version
- Experimental validations carried-out to ensure reliability of CIVA simulations

EXTENDE