

Contribution of numerical simulation to composite parts UT inspections

F. Foucher ⁽¹⁾, S. Lonné⁽¹⁾, S. Mahaut⁽²⁾, N. Leymarie⁽²⁾, N. Dominguez^(2, 3)

(1) EXTENDE (Massy), (2) CEA-LIST (Saclay), (3) EADS IW (Toulouse)

Outline

- Context:Benefits of NDT simulation
- NDE simulation: CIVA software
- UT Simulation with composite structures
 - Existing tools in CIVA 10
 - Extension of capabilities in future CIVA release
- Conclusion

Benefits of simulating NDT

- Help for methods and probes design: Time and cost savings (less prototypes, firm-up choices, etc.)
- **Expertise**: Help the diagnosis in complex situations (Comparison between acquisitions and simulation)
- Support qualification documentation
- Technical support during bid proposal: "Showing to convince"
- **Training:** Better understanding of physical phenomena
- In a wide range of situations :

NDE Simulation : CIVA software

- Software dedicated to NDE Simulation
- Relies mostly on semi-analytical models (i.e simplified but fast and accurate when applicable)
- Multitechnics:
 - UT: Ultrasonic Testing (Conventional Pulse-Echo, PA, TOFD, Tandem)
 - GWT: Guided Waves Testing
 - RT, CT: Radiography and Computed Tomography (X Rays, Gamma rays)
 - ET: Eddy Current Testing
 - Analysis tool (signal processing, data reconstruction...)
- Developed by the CEA LIST

- Research Centre in NDE: 100 persons
- Development and validation of CIVA: 25 persons
 EXTENDE

EXTENDE

CIVA Distribution

- I Technical support
- Training courses
- Consulting

Research & Development (3 ANR, 1FP7)

CIVA UT

Beam calculation:

- Probe design
- Zone coverage

Interaction with defects:

(Ascan, Bscan, Cscan, S-Scan, etc.)

 Predict inspection performances

UT simulation in composites

Composite materials :

- Heterogenous with different scales:
 - Carbon fibers: $\phi \sim 7 \mu m$
 - Plies: from 125 to 250 μm
- Anisotropic:

Typical sound speeds for Quasi-Longitudinal waves:

- ~ ~ 3000 m/s perpendicular to fibers plane
- ~ 9000 m/s along fiber direction

- Modelling approaches: Different strategies may be carried out:
 - Semi-analytical approaches on homogenized parts
 - Pure numerical approaches (e.g. Finite Elements, Finite Differences)
 - Combination of both numerical and semi-analytical approaches

Existing tools in CIVA 10 (current release)

Existing in CIVA 10: Homogenization approach and semi-analytical models :

- First step: homogenization of the single ply
 - Inputs : matrix + carbon fibers description
 - Outputs : equivalent anisotropic material, accounts for mutliple diffusion by fibers and viscoelastic losses (attenuation)
- Second step: homogenization of a multi layered composites;
 - Inputs : Homogenized single ply + stacking pattern
 - Outputs : equivalent anisotropic material

Advantages / Drawbacks:

- Easy definition of composites using material properties
- Connexion to beam propagation and defect scattering codes in CIVA
- Valid for periodic, regular composites (no ply waviness,etc...)
- Restricted to « quasi » plane composites (flat panels), not for curved composites
- No structural noise (due to homogenization approaches)
- Adapted to bulk waves but not to guided waves (wave guide is not homogeneous)
 EXTENDE

PhD S. Deydier with

Existing tools in CIVA 10

- Single layer composite, results and experimental validation : (PhD S. Lonné (2003), Dassault)
 - No dispersion of Longitudinal waves (similar behavior for SV and SH waves) :

 Attenuation of Longitudinal waves (similar behavior for SV and SH waves): Linearly dependent on frequency
 Decreases as %fibers in the second sec

Decreases as %fibers increases

Existing tools in CIVA 10

Multiple layered composite, results and experimental validation :

Composites inspection: Industrial issues

Complex structures and geometries :

Thickness variations

(Highly) curved parts

Stiffened panel

Specific defects to be assessed in composite structures

Porosity (black)

Delaminations

Ply waviness

Complex phenomena (noise, etc.)

Composites inspection: Industrial issues

Bulk waves inspection:

Modeling has to tackle these issues

- Most conventional technique : 2D scanning with L waves perpendicular to the structure
- Drawbacks: Difficulty to keep 0° incident waves on complex and curved parts

- Long range inspection (restricted scanning) of a structure
- Drawbacks: Complex interpretation of the response due to multiple and dispersive modes generated/scattered (by flaws and/or structures eg stiffeners)

Extension of capabilities in future CIVA release

Accounts for ply waviness, complex defects, etc.

- Homogenization and semi-analytical formulation cannot take account of the full complexity of the configurations
- Hybrid approach: Coupling of Semi-analytical model (CIVA « conventional ») and numerical models: « ACEL-NDT » Finite Difference tool by EADS IW (N.Dominguez)
- Noise simulation:
 - Development of a semi analytical model

Extension of the GW module to composite inspection (today, only metallic parts in CIVA GW)

1.5

ACEL-NDT

- Numerical model: Finite Difference Time Domain Simulation (FDTD)
- Developed by EADS Innovation Works (N.Dominguez)
- Application of ACEL-NDT to porosity evaluation:

ACEL-NDT

- Numerical model: Finite Difference Time Domain Simulation (FDTD)
- Developed by EADS Innovation Works (N.Dominguez)
- Application of ACEL-NDT to curved composite :

t=6.0 µs

But may be time consuming

 $t=9.4 \, \mu s$

CIVA/ACEL-NDT: Hybrid approach and integration in CIVA platform

- <u>Idea:</u> Benefit from the versatility of numetical approach, from the rapidity of semi-analytical approach and from the NDT-oriented interface of CIVA (easiness of use)
- Development and integration of a hybrid code: CIVA/ACEL-NDT

CIVA/ACEL-NDT: Example of simulation results:

Noise modeling

Experimental observations : Presence of structural noise on

composites :

- The noise level strongly depends on probe's frequency
- Possibility to « hide » the echo from a defect (near the surface)
- It also alters the backwall echo spectrum contents

Origin of this phenomenon : Inter-ply resonance effects.

EXTENDE

Development of a noise simulation code

- Account of multiple reflexions in a periodic pattern
- Flat composite
- Incident plane wave

(based on Wang & Rokhlin, JASA, 2003)

Noise modeling

Validation:

- CIVA model and FDTD Numerical model (ACEL-NDT) EADS
- FDTD (ACEL-NDT) and Experiment

Guided Waves and Structural Health Monitoring

Extension of CIVA GW to composite structures:

Application case: Evaluation of GW inspection of large stiffened structures

- Advantages: Long range inspection with no-need to scan the part, possibility to monitor the structure with embedded sensors (SHM)
- Drawbacks : Very complex signals (multiple modes + velocity dispersion)
- Needs for simulation: Predict the modes that propagate and with which energy
- Extension of the SAFE method already used in CIVA GW to the simulation of guided waves in sitffened plates (SAFE: Semi-analytical along the progation direction and FEM in composite cross section)

Guided Waves and Structural Health Monitoring

Extension of CIVA GW to composite structures:

Application case: Evaluation of GW inspection of large stiffened structures

- Advantages: Long range inspection with no-need to scan the part, possibility to monitor the structure with embedded sensors (SHM)
- Drawbacks : Very complex signals (multiple modes + velocity dispersion)
- Needs for simulation: Predict the modes that propagate and with which energy
- Extension of the SAFE method already used in CIVA GW to the simulation of guided waves in sitffened plates (SAFE: Semi-analytical along the progation direction and FEM in composite cross section)

Conclusion

CIVA: The NDT dedicated simulation platform

- Multitechnics: UT, GWT, RT, CT, ET
- Provides tools to the industry for a cost-efficient approach of NDT
- Provides tools to better understand phenomena involved in NDT

CIVA 10 for composites

- Existing models: Homogenizes multilayers structures to allow purely semianalytical calculations with bulk waves: Fast but some limitations
- Composite industrial applications often faces more complex geometries and phenomena

Extension of CIVA capabilities:

- CIVA/ACEL-NDT: Hybrid approach to account for complex plies arrangement (ply waviness) and typical composite defects
- Development of a semi-analytic « noise » model (inter plies resonance)
- Extension of CIVA GW to composites

