

3D modelling of utrasonic testing of austenitic welds

MOSAICS project

B. Chassignole (EDF R&D)
P. Recolin (DCNS)
N. Leymarie (CEA)
D. Elbaz (Extende)
P. Guy (INSA lyon)
G. Corneloup/C. Gueudré (Aix-Marseille Université)

Outline

Context

- Objectives and tasks of MOSAICS project
- Half-time project overview:
 - Material Characterization
 - Ultrasonic experimental tests
 - Code development, validation and exploitation

Context

- Austenitic welds of primary circuit of EDF PWR plants and DCNS structures are subject to thermal and mechanical stresses:
 - In-service flaws
- Regulatory requirements:
 - In-depth inspection of components ⇒ UT techniques: flaw detection and sizing
 - Process qualification
- But limitations for the UT inspection of austenitic welds:

Anisotropic, heterogeneous and coarse grain structures highly disturbing UT propagation:
 Beam deviation, division and attenuation

MOSAICS Project (supported by French National Research Agency)

- UT simulation: process development and qualification:
 - Parametrical studies for performance demonstration
- BUT current code limitations:
 - Semi-analytical models (CIVA) : not adapted to highly heterogeneous structures (current ray theory not valid)
 - Finite element code (ATHENA) : 2D version

MOSAICS project : Development and validation of numerical tools used for ultrasonic testing of austenitic welds in 3D configurations

Duration : Nov. 2011 to jan. 2015

MOSAICS technical tasks

Technical specifications

- Modelling input data (weld description)
- Industrial applications and mock-ups:

GTAW weld Horizontal-vertical position -26BN steel

DCNS applications

Electron beam weld

EDF Applications

CVCS nozzle– 316L steel – SMAW

Weld repair – alloy 82 – GTAW

Metallurgical weld characterization

Up-vertical position: 3D modelling

Weld description (grain orientation mapping) :

- Image processing on macrography
- Crystallographic analyses (X-Ray diffraction and EBSD)
- Description files compatible with modelling codes

X-ray diffraction

AGENCE NATIONALE DE LA RECHERCIE

DCNS

MINA Model

2D configurations

SMAW

Meshing 2x2 mm²

J. Moysan et al, IJVPV, 2003 A. Apfel et al, Ultrasonics, 2005

Inversion process for weld characterization

- Objective: weld characterization of unknown structure
- Previous work: process validation on numerical results in transmission mode
- MOSAICS :
 - Experimental data in tandem mode
 - Inversion on passes order

C. Gueudre et al, QNDE, 2010

Inversion process for weld characterization

- Work progress: research of accurate parametric describer(s) by experimental and modelling studies
- First conclusion: T45 highly sensitive to passes order and structure dissymmetry

Direction 1

Sequences with step = 1

elt

ATHENA modelling

Amplitude ?

11 12 13 14 15

dist. centre émission / centre soudure (mm)

10

17

16

Ultrasonic characterization of weld properties

- Ultrasonic technique in transmission mode
- Homogeneous sample machined in welding molds (316L steel and alloy 182)
- Phase velocity measurements in various planes and directions of propagation \Rightarrow elastic properties and Euler angles
- Transmitted beam mapping: attenuation measurement at different frequencies (normal incidence) \Rightarrow 2D attenuation model
- Longitudinal and shear wave attenuation measurements in any direction ?
- 3D attenuation model ?

Attenuation measurement: new strategy

Inverse problem resolution based on comparison between experimental and theoretical frequency spectra of the transmitted beam

Attenuation measurement: first results

Alloy 182 weld

	C ₁₁	C ₂₂	C ₃₃	C ₁₂	C ₁₃	C ₂₃	C ₄₄	C ₅₅	С ₆₆	φ (°)	θ (°)	ψ(°)
C' (GPa)	233	243	247	134	146	114	80	104	110	8	26	0
C'' (GPa)	2.54	3.01	0.22	1.09	0.9	1.24	1.96	1.04	2.13	/	/	/

N. Alaoui Ismaili et al, QNDE, 2013

f = 3 MHz

Prospects:

- Cij" variation with frequency
- Global optimization of 21 unknowns

UT experiment

DCNS

cea

edf

CIVA

EXTENDE

Inspections in automatic mode:

- Standard single-element probes and TRL phased arrays
- Longitudinal waves
- Two directions of inspection
- Influential parameters:
 - Beam angle
 - Beam focusing
 - Frequency

Results: notches

TRLPA - 2 MHz – 55f25

UT modelling: CIVA

BiNDT conference 12th of september 2013

current model : limitation when $\lambda \approx$ anisotropic domain size

Solution: smoothly inhomogeneous weld description

- From macrography, analytical model or MINA model
- Dynamic (paraxial) Ray Tracing model (DRT) :
 - Implementation of paraxial quantities in semi-analytical models (pencil method)

N. Leymarie et al, BINDT, 2013

FE code ATHENA

- Quasi-explicit scheme and regular mesh : good numerical performances
- Beam propagation in anisotropic and heterogeneous media
- Beam to flaw interaction (fictitious domain method)
- 2D version
 - Various probe types (TOFD, phased arrays,...)
 - Coupled with CIVAv11 (2012)
 - Attenuation model
 - GUI

3D needs :

- 3D probe (TRL PA)
- 3D flaw (elliptical)
- 3D anisotropy

Nz/Np

Zaxis

Send/Receives

18

ATHENA 3D: validation in isotropic and homogeneous medium C. Rose et al, 10th AFPAC

56

36

26

-16

Flaw meshing (GMSH)

Reference = SDH 1 mm-radius

	Diffraction (dB)							
	Rectangular	1/2 elliptical – P1	¹ / ₂ elliptical – P2					
ATHENA 3D	-9.0	-12.0	-17.5					
Experiment	-8.0	-12.0	-16.5					

ATHENA 3D: validation in anisotropic and homogeneous medium

Case 1: No beam deviation

Case 2: deviation on x

Case 3: deviation on y

In agreement with theory of ultrasonic propagation in such medium

V

ATHENA 3D: first validation in welded structure

Up-vertical weld and SDH

- SDH2 SDH1 = 9 dB (beam division and distortion, scattering at each domain interface)
- Experiment = -11.5 dB :
 - Influence of weld description ?
 - Influence of uncertainties on input data (material, probe...)?

Influence of weld description

Macroscopic anisotropic and homogeneous domains

+ 3D attenuation model

Grain-scale modelling (Voronoï tesselations)

Sensitivity analysis with ATHENA2D: principle

 \Rightarrow Sensitivity analysis

BiNDT confe

Sensitivity analysis with ATHENA2D: results

Horizontal position welding

SDH

Prospects :

- Plane defects
- Uncertainties on attenuation
- MINA model
- New applications

- Bscan with 18 probe positions (LW45° 2 MHz)
- 11 material parameters : 7 orientations + 4 elastic constants
- Attenuation model
- 2000 calculations
- Results :
 - Amplitude variation = 15 %
 - Sensitivity analysis

Hybrid CIVA/ATHENA : 3D version

Previous work (MOHYCAN project) : 2D version

MOSAICS :

- 3D version with optimized model (reduction of FE box)
- Calculation on HPC clusters
- Validation on isotropic medium
- Adaptation to anisotropic and heterogeneous media

result-sansfissure/planor1.dat-t180

Conclusion and prospects

- Metallurgical characterization realized on various welded mock-ups
- Inversion process for unknown structure to be developed and validated
- Experimental database for code validation
- Simulation:
 - Specific developments on CIVA and ATHENA codes to take into account complex 3D configurations (material, probe, geometry, flaw)
 - First validation for « 2.5D » extruded weld : to be continued
 - Code adaptation for real 3D anisotropic and heterogeneous structures

Implementation of a 3D attenuation model based on ultrasonic characterization

$$\frac{\partial \sigma}{\partial t} + \mathcal{D}\sigma = C\varepsilon(v) \quad \Longrightarrow \quad \overline{C} = i\omega(i\omega + D)^{-1}C$$

3D Hybrid model : validation on isotropic media and adaptation to weld configuration