

forward-looking energy

TSP clogging and secondary side deposit: performance evaluation using simulation and site results

Nechtan LE LOSTEC, Yann KERNIN, Christian FERRE, Joël MARTENS AREVA NDE-Solutions France, David DUMAY, EDF-CEIDRE Cannes, October 1st, 2013

Secondary side deposit

Clogging of TSP

AREVA NDE Solutions

TSP clogging and secondary side deposit – Nechtan LE LOSTEC - 06 January 2014 - p.3

AREVA NDE Solutions

¹ H. Bodineau and T. Sollier, "Tube support plate clogging of french PWR steam generators", Eurosafe, 2008

External Publication

TSP clogging and secondary side deposit – Nechtan LE LOSTEC - 06 January 2014 - p.4

Introduction Industrial solution

Technical objectives

- Monitor deposit level and progress speed
- Provide data to define chemical cleaning parameters
- Verify chemical cleaning efficiency

Development of a specific combined probe:

- eddy current (ET) axial sensor to measure free span deposit and usual tube examination
- FLIP sensor to measure TSP clogging

- Signal processing and visualization with Aida G3 software
 - Automatic analysis
 - Signal to clogging/deposit transfer function
 - Graphical representation
 - 2D/3D view of clogging/deposit mapping

Inspections of usual tube examination (bobbin), free span deposit evaluation and TSP clogging at the same time

Performance evaluation required, 3 sources of signals:

- Mock-up measurements
- Modeling and simulation

AREVA NDE Solutions

TSP clogging and secondary side deposit - Nechtan LE LOSTEC - 06 January 2014 - p.5

Secondary side deposit Technical approach

Deposit reference tubes manufacturing

- 1 tube with varying thickness of deposit
- 1 tube with varying composition (Fe₃O₄ mass percentage)

Theoretical formulation of the magnetic permeability of the deposit

Relative permeability μ_r as an analytic function of the Fe₃O₄ rate

FE simulation, reference tubes measurement versus simulation results

- Model validation
- Magnetic permeability theoretical formulation validation

Performance evaluation

- Identification of influent parameters (geometry and material properties)
- Parametric study

On-site implementation

AREVA forward-looking energy

Secondary side deposit Model validation

lux

- FE modeling using Flux3D
- Model validation

AREVA NDE Solutions

 Cross verification between theoretical formulation, simulation and experimental results

Deposit thickness effect

Simulation model validation vs experimental results (50% magnetite)

Magnetic permeability effect

Relative permeability analytic formula validation vs correlation modelling/experimental results (0.23mm deposit)

• Calculation of the relative permeability for any deposit composition

TSP clogging and secondary side deposit – Nechtan LE LOSTEC - 06 January 2014 - p.7

Secondary side deposit **Parametric study**

0.000025

Electrical resistivity

No influence for $\rho > 10^{-4} \Omega.m$

Deposit configuration

23% under estimate of deposit thickness for 0.67mm thickness when 180° deposit instead of 360° deposit

Deposit density and composition

Variation of the deposit relative permeability from 1.37 to 1.41 for Fe_3O_4 mass percentage from 88% to 95%

Copper

690)

- Important effect on the signal
- Necessity to manufacture reference tube with representative composition

AREVA NDE Solutions

TSP clogging and secondary side deposit - Nechtan LE LOSTEC - 06 January 2014 - p.8

forward-looking energy

Mean deposit thickness (mm)

Secondary side deposit On-site implementation

Since 2009, 3 SG secondary side deposit analysis

- 3/4" and 7/8" tubes
- 25% or 50% of the tube bundle
- Three more steam generators to be inspected

AREVA NDE Solutions

	SG 1					SG 2					SG 3				
AREVA Deposit mapping	Parti PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 Total	PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 par bran	Nombre de segments 12 14 14 14 14 14 14 14 14 14 14 14 14 0he (en ka)	Branche chaude (kg) 34.4 39.5 118.3 158.8 152.8 153.1 128.6 109.0 68.2 939	Branche froide (kg) 25.4 17.1 5.5 11.3 8.7 2.7 6.6 25.7 62.0 185	Partie libre PT PE1 PE2 PE3 PE3 PE4 PE5 PE6 PE6 PE7 PE7 PE8 PE8 PE9 Total parties droits	PE1 PE2 PE3 PE4 PE6 PE6 PE7 PE8 PE9 PE9 PE9 Il parties droites timation cintre i	Nombre de segments 12 14 15 (kg)	Branche chaude (kg) 7.7 1.0 1.5 5.8 5.8 5.8 5.8 5.8 5.8 5.8 157.9 180.5 149.9 564.0 57 11	Branche froide Branche 1.5 1.2 0.1 0.4 0.5 0.7 0.9 1.4 5.7 12.4 76 76	PT PE1 PE2 PE3 PE4 PE5 PE6 PE6 PE7 PE8	PE1 PE2 PE3 PE5 PE6 PE7 PE8 PE9 Total parties droke	Nombre de segments 12 14 (g)	Branche chaude (kg) 3.8 1.5 1.2 1.9 6.5 40.6 99.8 109.2 98.9 363.6 436	Branche froide (kg) 6.1 6.2 3.5 5.9 7.4 8.3 9.5 11.9 14.6 73.3 9
		Total (e	1104 n kg)		04	Total tubes (kg)	733			Total tubes (kg)		513.4	
EDF reference	1250kg					1000kg (±30%)					500kg (±40%)				

Good correlation between AREVA deposit mapping and EDF reference (mass balance method)

TSP clogging and secondary side deposit – Nechtan LE LOSTEC - 06 January 2014 - p.9

TSP clogging Technical approach

Performance evaluation using finite element simulation

Step 1: validation of SAX and FLIP models

- EDF Clogging mock-ups: 0 25 50 75 -100% clogging rate
- Finite element simulation
- Simulated versus experimental signals

Step 2: use models to determine influent parameters of real deposit/clogging configuration

- Real deposit/clogging configuration parameters
- Finite element simulation with variable parameters, determining influent parameters
- Comparison to site measurements to find correct parameters value
- Step 3: predict signal from specific deposit/clogging configuration
- Conclusion on FLIP and SAX probe performances

TSP clogging FLIP model validation

Mock-up model from CAD

- Limited plate radius
- 4 volumes for the different clogging rates

Mock-up model for FE simulation

- No tube because no effect on probe signal
- 1/8 geometry + symmetry/periodic conditions

Unknown material properties

- TSP magnetic permeability
- Clogging material magnetic permeability

2D parametric study fo validation / material properties identification

AREVA NDE Solutions

TSP clogging and secondary side deposit – Nechtan LE LOSTEC - 06 January 2014 - p.11

TSP clogging FLIP model validation

Measured and simulated probe signals

- Good agreement but ...
- ... multiple 'visible' solutions...
- ... anyway model is validated.

Transfer function for operational use:

But depends on material properties

Best objective solution:

AREVA NDE Solutions

TSP clogging and secondary side deposit – Nechtan LE LOSTEC - 06 January 2014 - p.12

Operational solution for tube deposit and TSP clogging with positive results

Deposit and clogging probes performance study in progress

- FE modeling vs mock-up
- Validation of FE models
- Determination of influent parameters
- Fine tuning of transfer functions

Update transfer functions used for deposit/clogging mapping in AIDA software

Perspective: comparison with real site deposit/clogging mass measurements from Sherlock program

Note

66

This document contains elements protected by intellectual property rights as well as confidential information.

Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless AREVA has provided its prior and written consent. This prohibition concerns notably any editorial elements, verbal and figurative marks and images included herein.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided. In particular, no patent application and/or registered design may be applied for on the basis of the information contained herein.

Legal action may be taken against any infringer and/or any person breaching the aforementioned rules.

No warranty what so ever, express or implied, is given as to the accuracy, completeness or fitness for a particular use of the information contained in this document. In no event AREVA shall be liable for any damages what so ever including any special, indirect or consequential damages arising from or in connection with access to, use or misuse of the information contained in this document.

