

Review of Progress in Quantitative Nondestructive Evaluation

Ultrasonic Inspection of Adhesive Joints of Composite Pipelines

<u>Priscila Duarte de Almeida</u>¹ João Marcos Alcoforado Rebello² Gabriela Ribeiro Pereira² Sérgio Damasceno Soares³ Roman Fernandez⁴

¹ Non-Destructive Testing, Corrosion and Welding Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
 ² Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
 ³ Petrobras Research Center, CENPES – PETROBRAS, Rio de Janeiro, Brazil
 ⁴ EXTENDE, Massy, France

MOTIVATION

The crescent use of composite materials on many sectors of the industry and, specially, on the oil industry;

Inexistence and necessity of a methodology of non-destructive inspections capable to assure the integrity and reliability of joints used on pipelines conducting fluids.

OBJECTIVE

Evaluate the application of the ultrasonic technique at the detection of defects as lack of adhesive and lack of adhesion, commonly found in adhesive joints of GFRP pipelines applied at onshore and offshore facilities.

ULTRASOUND IN GFRP

Anisotropy and attenuation: inherent characteristics

Most studied defects: porosity, delaminations, matrix/reinforcement disbonding, fatigue damages

METHODOLOGY Studied Samples

- 16" diameter GFRP pipeline joint: epoxy + glass fiber
- Through wall thickness: aprox. 20mm
- Adhesive layer thickness: aprox. 1mm

D4: .8910891 mm

D3: 1.089109 mm

METHODOLOGY Studied Defects

Lack of Adhesive: Areas with absence of the adhesive layer.

Simulated Lack of Adhesive

Lack of Adhesion: foreign body that prevents the direct contact between the adhesive layer and the pipe's surface.

EXTENDE

METHODOLOGY Simulations

Ultrasonic Module of CIVA[©] 11 beta version.

Simulation of GFRP structure and commercially available transducers.

CIVA

N·D·E | 11

METHODOLOGY Reference Block

Aim: validate the inspection

This block has the same cross section as the inspected samples.

Sample and its reference block

METHODOLOGY Transducers & Equipment

- Contact transducers:
 1.6MHz, 2.25MHz, 5MHz.
- Ultrasonic Equipment: GE USIP 40

• Manual Scanning

RESULTS Simulations

1.6 and 2.25MHz Transducers

Scanning step: 9mm

Computation of surface, interface and backwall echos

RESULTS Simulations: Lack of Adhesion

RESULTS Simulations: Lack of Adhesive

RESULTS Simulations: 1.6 x 2.25MHz

RESULTS Experimental A-Scans

Non defective areas

Defective areas

EXTE N.D.E

CIVA

RESULTS Frequency Behavior

- Signals taken from the reference block
- 2.25MHz: the lowest frequency that returned good signals
- Used transducer: Imasonic IM 1626, 1.6MHz

RESULTS Calibration

Take a signal from the reference block, adjust the gain to elevate the second signal (pipe's internal surface) to 80% of the display.

RESULTS Acceptance Criteria

Acquired data: amplitude values (in % of the display) of the pipe's internal surface echo.

- Amplitudes below 35% Defective Areas
- Amplitudes between 35% and 40% Transition areas
- Amplitudes above 40% Non-defective areas

RESULTS C-Scans

Blue: well bonded areas Yellow: Transition areas Red: defective areas

RESULTS Cutting of the Joints

Selected Samples:

- Lack of Adhesion 4-2 and 4-3
- Lack of Adhesive 8-2 and 8-3

Method of evaluation: Visual inspection

Lack of Adhesive 8-2

Real Map

Lack of Adhesive 8-3

Lack of Adhesion 4-2

Real Map

Lack of Adhesion 4-3

RESULTS Evaluation: US x Visual

Sample	Accuracy (%)
Lack of Adhesion 4-2	70
Lack of Adhesion 4-3	74
Lack of Adhesive 8-2	69
Lack of Adhesive 8-3	65

Accuracy: based on the comparison between C-scan and real maps.

RESULTS Evaluation: US x Visual

- Limitations of the proposed methodology:
 - Lack of Adhesion: US was not able to detect some areas with the presence of a foreign body (adhesive tape).
 - Lack of Adhesive: US was not able to precisely dimension some defective areas. Defective areas not entirely covered by the US beam can be mistaken for non-defective areas.

RESULTS Improvement of Accuracy & Resolution

- Focused Transducers: concentration of the energy at a focal spot
- CIVA simulation of a 1MHz commercially available transducer

RESULTS Focused Transducer Simulations

Lack of Adhesion

COPPE / POLI / CT / UFRJ

Lack of Adhesive

CONCLUSIONS

The pulse-echo technique is suitable to detect lack of adhesion and lack of adhesive defects in the studied material

CIVA 11 was able to predict the ultrasonic response in the studied GFRP structure

CIVA 11 was able to predict the frequency behavior in the studied GFRP structure

CONCLUSIONS

Best transducer frequency: aprox. 1MHz

Visual inspection after cutting the samples confirmed the global results former obtained with US inspection.

Focused transducers may improve sensibility and resolution

FUTURE WORK

Inspections with focused transducers

Automatization of the proposed methodology

Evaluation of more sofisticated techniques

Review of Progress in Quantitative Nondestructive Evaluation

Thank you!

priscilad@metalmat.ufrj.br

