DEVELOPPEMENT ET VALIDATION D'OUTILS DE SIMULATION POUR LE CONTRÔLE ULTRASONORE DE SOUDURES AUSTENITIQUES

Souad BANNOUF, Déborah ELBAZ - EXTENDE Bertrand CHASSIGNOLE – EDF R&D Nicolas LEYMARIE – CEA Patrick RECOLIN - DCNS

Plan de la présentation

- Contexte
- Le projet MOSAICS
- Le modèle continûment variable de CIVA
- Le code ATHENA 3D
- Soudure avec chanfrein en V *application EDF*
- Piquage des SSP (Soupape Sureté Primaire) application DCNS
- Conclusion

Contexte

Développement de moyens de simulation en END, validés et opérationnels :

- Etudes paramétriques pour déterminer les performances et les limites d'un procédé END (impact des paramètres influents, qualification des procédés)
- Compréhension de phénomènes physiques complexes

Difficultés du contrôle ultrasonore des soudures austénitiques des circuits primaires et auxiliaires des centrales à réacteur à eau pressurisée :

- Structure à gros grains, anisotrope et hétérogène
- Déviation, division et atténuation du faisceau et bruit de structure

Le projet MOSAICS

- Projet ANR MOSAICS : MOdélisation d'une Soudure Austénitique Inspectée par Contrôle ultraSonore (10/2011 – 01/2015)
- 6 partenaires : EDF DCNS CEA EXTENDE Université d'Aix-Marseille INSA de Lyon
- Objectif : développer des codes de simulation numérique permettant de prédire les phénomènes de propagation ultrasonore dans les soudures austénitiques pour fiabiliser un diagnostic de contrôle non destructif
 - Développement et utilisation d'outils de modélisation prenant en compte des configurations complexes 3D
 - Code aux éléments finis ATHENA 3D
 - CIVA : modèle continûment variable

Le modèle continûment variable de CIVA

Méthode des rayons paraxiaux dans un milieu anisotrope et doucement inhomogène (thèse A. Gardahaut, 2013 – session poster)

Soudure décrite comme une cartographie d'orientations cristallines

- Obtention grâce au plug-in Orientation J du logiciel Image J (EPFL)
- Détermine l'orientation de chaque pixel de l'image
- Image d'orientation représentée sur l'intervalle [-90°, 90°]
- Filtre de lissage (fonction gaussienne) dont la largeur est liée à la longueur d'onde λ Décimation spatiale pour réduire le temps de chargement de la cartographie

À préciser avant calcul

Avant lissage et décimation

Après lissage et décimation

Le code ATHENA

- Code aux éléments finis basé sur la résolution des équations de l'élastodynamique exprimées en termes de contraintes et vitesses de déplacement
- Modélisation de l'ensemble de la chaine de contrôle US : pièce, capteur et défaut
 - Discrétisation
 - zone de calcul : maillage régulier 3D
 - Défaut : domaines fictifs (maillage séparé)
 - Cartographie d'orientation des grains
 - grille constituée de carrés de 2 mm de côté
 - Mesure des orientations des grains colonnaires par traitement d'image sur macrographie (transformée de Hough)
- Modèle d'atténuation traduisant le phénomène de diffusion aux joints de grain implémenté en 2D et en cours de développement pour la version 3D
- Version 3D validée en milieu isotrope homogène (C. Rose, ATHENA 3D : A finite element code for ultrasonic wave propagation, IOP Publishing, Journal of Physics: Conference Series 498 (2014))

Objectif de l'étude

Validation du module continûment variable de CIVA et du code ATHENA 3D

- Analyse des amplitudes avec et sans traversée de la soudure pour différents défauts calibrés :
 - Trous Génératrices
 - Entailles débouchantes en fond de soudure
- 2 cas d'applications :
 - Cas EDF : soudure en V anisotrope et de symétrie orthotrope
 - Cas DCNS : Piquage des SSP (Soupape Sureté Primaire)

Soudure avec chanfrein en V – application EDF

Soudure en acier inoxydable austénitique de nuance 316 L soudée à l'électrode enrobée et en position verticale montante Matériau anisotrope et de symétrie orthotrope :

$$\rho = 7.85.10^3 \, kg.m^{-3} \, et \, C_{ij} = \begin{pmatrix} 247 & 110 & 148 & 0 & 0 & 0 \\ 110 & 247 & 148 & 0 & 0 & 0 \\ 148 & 148 & 218 & 0 & 0 & 0 \\ 0 & 0 & 0 & 105 & 0 & 0 \\ 0 & 0 & 0 & 0 & 105 & 0 \\ 0 & 0 & 0 & 0 & 0 & 80 \end{pmatrix}$$

Chanfrein en V d'épaisseur 37 mm

d1

cofrend

Désorientation moyenne des grains de 18° dans le sens de soudage

25 mm

H=10mm

TG

25mm

Ø1.5mm

entailles

cea

37 mm

Résultats de validation sur les TG

 $\sigma = 3 \text{ mm}$ Décimation = 2 mm Valeurs choisies pour que l'amplitude simulée du TG avant soudure soit au plus près de l'expérimentale

	Expérience (dB)	Civa (dB)	ATHENA 3D (dB)
Sens d1	-12.7 ± 0.6	-14.7	-9.9
Sens d2	-9.3 ± 0.7	-10.1	-3.8

Résultats de validation sur les entailles

$\sigma = 3 \text{ mm}$		Expérience (dB)	Civa (dB)	ATHENA 3D (dB)
Décimation = 2 mm	Sens d1	-12.7 ± 0.6	-12.5	-7.9
	Sens d2	-10.6 ± 0.9	-7.8	-5.9

- CIVA : résultats proches de l'expérience
- □ ATHENA : atténuation bien mise en évidence mais sous-estimée
 - absence de modèle d'atténuation lié à la diffusion aux joints de grain dans la version 3D
 - Implémentation en cours basée sur les travaux de caractérisation de l'INSA de Lyon
 - Etude spécifique à mener sur la reproduction du bruit de structure en simulation

Piquage des SSP (Soupape Sureté Primaire) – application DCNS

- Soudure orbitale en acier austénitique de type 26Bis (équivalent 316L) réalisée en position corniche après une passe de fusion en TIG
- Non symétrique : inclinaison des grains vers la droite ($\theta \approx 45^{\circ}$) causée par la position de soudure en corniche
- Pas d'orientation dendritique particulière au niveau de la racine

Résultats de validation sur les TG

 $\sigma = 2 \text{ mm}$ Décimation = 5 mm Valeurs choisies pour que l'amplitude du TG après soudure soit au plus près de l'expérimentale (2 dB d'écart)

Résultat sur le TG de référence à15mm de profondeur

	Expérience (dB)	Civa (dB)	
Après traversée de la soudure (TG 15mm)	-8,2	-10,2	

Résultat sur le TG 10

Expérience

 Résultats satisfaisants entre expérience et CIVA continument variable pour des défauts de type TG (2 dB d'écart)

Résultats de validation sur l'entaille

BALAYAGES (mm)

CIVA CV

Expérience

- Ecart important entre la mesure expérimentale et simulée (10.5 dB) Explication : pour détecter l'entaille le faisceau passe par la racine de la soudure
 - fortement hétérogène
 - anisotropie mal maitrisée
 - Orientations dendritiques erronées

Conclusion et perspectives

Avancées de MOSAICS :

- Codes adaptés pour traiter des configurations 3D (anisotropie quelconque, capteur, défaut)
- CIVA_CV : plus de limitations liées aux structures fortement hétérogènes
- ATHENA3D : configurations non traitables à ce jour en 2D
- Validation expérimentale
 - Plusieurs configurations de soudure et de défauts testées, ondes L
 - Prédiction des perturbations (atténuation, déviation) et de l'influence de la dissymétrie de la structure (variations entre les directions de contrôle)
 - Modèles à affiner pour meilleure estimation des amplitudes
- Etudes complémentaires :
 - Autres types de soudures et autres modes de propagation
 - Modèle d'atténuation 3D (constantes d'élasticité complexes)
 - Etude de sensibilité sur les paramètres matériau (type de description de soudure, constantes d'élasticité, paramètres de lissage dans CIVA...)

Merci pour votre attention !

