

Validation of simulation tools for ultrasonic inspection of austenitic welds in the framework of the MOSAICS project

Souad BANNOUF, Déborah ELBAZ - EXTENDE Bertrand CHASSIGNOLE – EDF R&D Nicolas LEYMARIE – CEA Patrick RECOLIN - DCNS

Outline

Context

- I The MOSAICS project
- The CIVA dynamic ray tracing model : "CIVA weld"
- I The 3D ATHENA code
- Ultrasonic inspection: comparison between experimental and modelling results
- Modelling influential parameters
- Conclusion

Context

Use of robust NDT numerical models:

- Understanding of complex physical phenomena
- Parametric studies in order to determine the performances and limitations of a NDT process (impact of influential parameters, qualification of UT processes)
- Limitations for the UT inspection of austenitic welds in piping of primary circuit of EDF PWR plants and DCNS structures:
 - Anisotropic, heterogeneous and coarse grain structures highly disturbing UT propagation
 - Beam deviation, division and attenuation

The MOSAICS project

- Duration: 10/2011 01/2015
- Supported by French National Research Agency
- 6 partners : EDF DCNS CEA EXTENDE Aix-Marseille University– INSA de Lyon
- I Objective: development and validation of numerical codes to predict the ultrasonic propagation in austenitic welds for a reliable NDT diagnosis
 - Development and validation of modelling tools used for ultrasonic testing of austenitic welds in 3D configurations
 - Finite element code ATHENA 3D
 - CIVA semi-analytical models : continuously varying model

The CIVA dynamic ray tracing model

Method of paraxial rays in an anisotropic and gently inhomogeneous medium

Weld described as a grain orientation mapping

- Obtained with the Orientation J plug-in of the Image J software (EPFL)
- Determines the orientation of every pixel of an image
- Orientation imaging displayed on [-90°, 90°] interval
- Smoothing filter (Gaussian function) characterized by its standard deviation σ associated with the wavelength λ
- Spatial decimation can be performed to reduce the loading time of the mapping

To be defined before calculation

Before smoothing and decimation

After smoothing and decimation

The ATHENA code

- FE code based on solving elastodynamic equation in the calculation zone expressed in terms of stress and velocities of displacements
- Modelling of the entire ultrasonic testing chain: specimen, probe, and defect
- Discretization:
 - Calculation domain: Cartesian regular 3D mesh
 - Defects : fictitious domains method (separate mesh)
- Grain orientation mapping:
 - Grid made of 2mm side squares
 - Measurements of columnar grain orientations by macrograph image processing (Hough transform)
 - Attenuation problem reflecting the phenomenon of grain boundary scattering implemented in 2D and development for the 3D version; in progress
 - 3D version validated in isotropic and homogeneous medium (C. Rose, ATHENA 3D : A finite element code for ultrasonic wave propagation, IOP Publishing, Journal of Physics: Conference Series 498 (2014))

Objective of the study

Validation of CIVA dynamic ray tracing model and of the ATHENA 3D code

- Analysis of the amplitude before and after weld crossing for different calibration defects:
 - Side Drilled Holes (SDH)
 - Backwall breaking notches
- 2 application cases :
 - EDF application: anisotropic V-shape weld with orthotropic symmetry
 - DCNS application: primary safety valve nozzle (not presented today)

EDF application case: V-shaped weld

Austenitic stainless steel grade 316 L weld realized with SMAW in vertically upward position

Anisotropic material with orthotropic symmetry :

$$\rho = 7.85.10^{3} \, kg.m^{-3} \, et \, C_{ij} = \begin{pmatrix} 247 & 110 & 148 & 0 & 0 & 0 \\ 110 & 247 & 148 & 0 & 0 & 0 \\ 148 & 148 & 218 & 0 & 0 & 0 \\ 0 & 0 & 0 & 105 & 0 & 0 \\ 0 & 0 & 0 & 0 & 105 & 0 \\ 0 & 0 & 0 & 0 & 0 & 80 \end{pmatrix}$$

18°

V bevel of 37 mm thickness

Average grain tilt estimated to 18° along the welding direction (WD axis)

 σ = 4 mm Decimation = 3 mm Values chosen in order to minimize the discrepancy between experimental and modelling results in d1 and d2 directions for SDH defects.

	Experiment (dB)	Civa (dB)	ATHENA 3D (dB)
Direction d1	-12.7 ± 0.6	-12.3	-9.9
Direction d2	-9.3 ± 0.7	-8.1	-3.8

- CIVA : simulated results in good agreement with experimental ones
- □ ATHENA :
 - Prediction of scattering at each domain interface but underestimation of attenuation and overestimation of noise
 - New calculations with 3D attenuation model using INSA characterization work to be performed
 - Specific study to be carried out on the reproduction of coarse grain noise

CIVA influential parameters

In CIVA_CV : 2 variables to specify before calculation

- The size of the Gaussian window used as smoothing filter (σ)
- The decimation parameter

Empirical values definition

- The SDH echoes amplitude converges when σ value increases
- Amplitude not equal the one measured experimentally
- The curve evolution changes according to the direction studied
- High sensitivity of the results with the 2 parameters

ATHENA3D influential parameters *influence of the weld grid description*

- Key parameter for the UT modelling with ATHENA
- Comparison of 3 grid descriptions

EXTEIN.

	Experiment	Description 1 (2 mm grid)	Description 2 (1 mm grid)	Description 3
Defect echo amplitude (dB)	-12.5	-11.0	-7.0	-3.5
Structural Noise amplitude (dB)	-23.0	-11.0	-12.0	-18.0
SNR (dB)	11.5	0.0	5.0	14.5

Significant influence of the weld description on the FE modelling results in terms of echo amplitudes and noise level

622

ATHENA3D influential parameters influence of C_{ii} elastic constants

- C_{ii} coefficients describe the anisotropy degree of the weld
- Difficult to measure accurately
- Comparison of 2 sets of anisotropic constants with 2mm-square grid

	C ₁₁	C ₂₂	C ₃₃	C ₂₃	C ₁₃	C ₁₂	C ₄₄	C ₅₅	C ₆₆
Set 1	247	247	218	148	148	110	110	110	80
Set 2	250	255	230	137	127	112	102	123	60

	Set 1	Set 2
Amplitude (dB)	-11.0	-8.5
SNR (dB)	0.0	4.0

Little changes on the C_{ij} coefficients have an impact on the amplitude and SNR.

The second set of \mathbf{C}_{ij} describe a less anisotropic tensor.

Conclusion and outlook

MOSAICS progress :

- Development of simulation codes adapted to 3D configurations (any kind of anisotropy, probe, flaw)
- CIVA_CV: No more limitations associated to highly heterogeneous structures
- ATHENA3D: allows to deal with configurations impossible in the 2D version
- Experiment validation
 - Different configurations of weld and defects have been evaluated with L waves only
 - Disturbances (attenuation, deviation) and influence of the structure dissymmetry predictions
- Outlook :
 - Other kind of welds and propagation modes
 - 3D attenuation model (complex elasticity constants)
 - Study on the influence of the material input data (scale of weld description, elastic constant values,...)

Thank you for your attention !

