11th NDE 11th International Conference on Non Destructive Evaluation in Relation to Structural Integrity for Nuclear and Pressurized Components

Advanced Tools based on Simulation for analysis of Ultrasonic Data

Souad Bannouf¹, Philippe Dubois¹, Fabrice Foucher¹, Roman Fernandez¹, Stéphane Le Berre²

EXTE N.D.E

Introduction

- The process of UT data analysis
- Analysis tool n°1: Segmentation
- Analysis tool n°2: Simulation on Acquisition
- Conclusion

- Introduction
- The process of UT data of analysis
- Analysis tool n°1: Segmentation
- Analysis tool n°2: Simulation on Acquisition
- Conclusion

CIVA in a few words

- Software platform dedicated to NDE modeling
- Multi-techniques :
 - UT: Ultrasound
 - GWT: Guided Wave
 - RT-CT: Radiography (Xrays & Gamma Rays) & Computed Tomography
 - ET: Eddy Current
 - Analysis & reconstruction tools

Developed by CEA LIST

- Research Centre in NDE: 100 people
- CIVA Development & validation: 30 people

- Distributed and supported by EXTENDE
 - 14 people
 - 10 people for technical support

CIVA UT

EXTE N.D.E

Beam calculation:

Interaction with defects:

(Images Ascan-Bscan-Cscan, etc...)

CIVA ATHENA2D

Module CIVA ATHENA 2D:

Beam/Flaw Scattering

- Hybrid computation CIVA (semi-analytical)/ ATHENA 2D (FEM code from EDF)
- Accounts for all field/flaw interaction phenomena in a FE box defined around flaw(s)
- Computation time is efficient (2D code, reduced size of the FE box)

CIVA UT Analysis

UT data analysis:

- A set of « 1 click Tools » for fast and easy extraction of indications from UT Data
- Advanced and Cutting-edge tools:
 - Segmentation, Reconstruction, Signal Processing, Simulation on Acquisition, ...

Introduction

- The process of UT data analysis
- Analysis tool n°1: Segmentation
- Analysis tool n°2: Simulation on Acquisition
- Conclusion

The process of UT data analysis

Objective of the analysis: to obtain an examination report that lists the operating conditions and the indications present in the inspected component

Analysis can be performed following several steps:

- Validation of the acquisition
- Preliminary signal processing : application of DAC correction; reconstruction of the data in the relevant frame
- Application of detection and characterization thresholds → eliminate false calls or small defects
- Clustering or segmentation algorithms: fast determination of the echoes of interest
- Indication table

Ľ

Introduction

The process of UT data analysis

Analysis tool n°1: Segmentation

Analysis tool n°2: Simulation on Acquisition

Conclusion

Segmentation

- Goal: grouping signals coming from the same defect or part of a defect
- I The algorithm

- Can be 2D or 3D
- Grouping based on physical behavior of the ultrasound wave
- Multiple indications can be, if wished, grouped as one (ex: tip diffraction echoes from a crack)
- Creation of an examination report

Application to composite immersion inspection

Acquisition: electronic scanning of 16 elements with null delay law and 1 element step is associated with a Cscan displacement of the probe

Step 1 : Link the data = combination of electronic and mechanical scanning along the same axis **Before link**

After link

Step 2 : Isolate the flaw's responses with temporal gates

After time gating

Application to composite immersion inspection

Step 4: Activate the Segmentation

Amplitude threshold: level above which the signal will be taken into account during the analysis

Segmentation

- Spatial resolution: number of successive shots considered to group information
- Temporal resolution: time window in which the processing will join two points of consecutive shots by a segment
- Temporal parameter: time window for each Ascan in which we keep only the absolute maximum(s)

Step 5: Creation and export of an indication table

d	Gate	Visibility	Locked indication	Comment	Type		Amplitude max (dB)	Time (max) (µs)	DX (st)	DY (st)	DZ (s
-1	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	•	-3.6	3.5	7.2	8	0.24
-2	[Source 1] Gate 3 (Σ) (C10)	۲			Flaw	•	-5.1	3.99	7.2	7	0.05
-3	[Source 1] Gate 3 (Σ) (C10)	۲			Flaw	-	-5.3	3.55	7.8	8.5	0.21
4	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	-	-3.7	2.98	9	8.5	0.23
5	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	•	-5.8	2.67	7.2	7	0.21
6	[Source 1] Gate 3 (Σ) (C10)	۲			Flaw	•	-5.3	2.47	7.2	7.5	0.21
7	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	٠	-6.3	1.86	5.4	6	0.05
8	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	•	-2.3	2.58	8.8	9.5	0.12
9	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	•	-2.1	3.97	12	9.5	0.23
10	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	-	-0.6	1.53	13.2	10.5	0.09
11	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	-	-4.3	1.6	8.4	9	0.03
12	Source 1] Gate 3 (Σ) (C10)	۲			Flaw	-	-5.3	2.97	5.4	7	0.07

CIVA_Analysis_Segmentation_in_one_click.mp4

Should be in

accordance with procedure

and noise level

Relevant values by

default.

adjust if necessary

- Introduction
- The process of UT data analysis
- Analysis tool n°1: Segmentation
- Analysis tool n°2: Simulation on Acquisition
- Conclusion

Simulation on acquisition

CIVA UT Analysis module also proposes to perform a simulation in a ROI of the acquisition in order to enhance diagnosis.

Identification of echo n°3

Echoes n°1 and n° 2 are geometry echoes but is it the same for echo n°3 ?
The simulation on acquisition tool lets you simulate geometry echoes in a ROI

Identification of echo n°3

We suspect Echo n°3 to be a planer flaw. Let's use the simulation on Acquisition tool to verify it

Conclusion

UT Analysis tool :

L

- Helps to quickly evaluate and record indications
- Included in CIVA 2015 UT or available as a separate module
 - Segmentation in « one click »
 - « Simulation on Acquisition » tool
 - Provides manual data inversion assisted by simulation
- Facilitates processing acquisition data from:
 - M2M systems (MultiX++, Gekko)
 - Olympus (TomoView[®], OmniScan[®])
 - Compatibility with other formats being currently studied
- Additional demonstration videos available on YouTube: <u>https://www.youtube.com/user/extendechannel</u>

