

Karim JEZZINE¹, Damien SEGUR¹, Romain ECAULT², Nicolas DOMINGUEZ²,

¹CEA, LIST, Toulouse, France ²Airbus Group Innovations, Toulouse, France

SIMULATION OF ULTRASONIC INSPECTIONS OF COMPOSITE STRUCTURES IN THE CIVA SOFTWARE PLATFORM

WCNDT 2016 | Jezzine Karim

> Context: CIVA-COMPOSITE

- Hybrid modelling for the simulation of composite inspections
- Simulation results and validations
- > Conclusions & Perspectives

Carbon Fiber Reinforced Polymers

- Used to reduce the weight of the structure while maintaining high mechanical performance
- Highly heterogeneous and anisotropic

- Ply waviness
- Delaminations
- Matrix crackings
- Porosities

List HOMOGENIZATION OF COMPOSITE LAMINATES (1/2) AIRBUS

Scale of inhomogenities

- Fiber diameter: ~ 5 to 10 μm
- Intermediate epoxy layers: ~10 to 25 μm
- Ply thickness: ~ 100 to 200 μm

Typical UT signals (pulse-echo Ascan)

Presence of structural noise due to intermediate epoxy layers

Necessary to homogenize the structure to apply ultrasonic propagation models

List HOMOGENIZATION OF COMPOSITE LAMINATES (2/2) AIRBUS GROUP

Homogenization at ply scale (based on multiple scattering)

S. Lonné PhD thesis, 2003

Name Homogeneous	material				
		Density		1.494 g.cm ⁻³	
Properties					
		Symmetry	Transversely isotro	pic	-
Stiffness matrix (GPa	 a) - elastic properties 				
141.952	5.286	5.286	0	0	0
5.286	12.432	5.81	0	0	0
5.286	5.81	12.432	0	0	0
0	0	0	3.311	0	0
0	0	0	0	5.089	0
0	0	0	0	0	5.089
		Symmetry	(i) X'		
			Υ'		
			04		

Full homogenization

S. Deydier PhD thesis, 2006

Properties Visualization					
Symmetry Orthotropic 👻					
Stiffness matrix (GPa	 a) - elastic properties 				
111.709	70.666	4.697	0	0	(
70.666	111.709	4.697	0	0	(
4.697	4.697	12.432	0	0	(
0	0	0	4.128	0	C
0	0	0	0	4.128	C
0	0	0	0	0	20.521

SIMULATION APPROACHES IN CIVA FOR COMPOSITE LAMINATES

Semi-analytical ray based approach

list

Clatech

- Requires full homogenization of the laminate (structural noise cannot be taken into account)
- Very fast computations for flat specimens (rays travel in straight line), even for 3D.
- Ray tracing and amplitude computation are slower for curved anisotropic media but remain fast compared to numerical methods.
- Available in CIVA for 2D and 3D computations

Hybrid modelling (ray based/ Finite Difference Time Domain)

- Only requires homogenization at ply scale (structural noise is taken into account)
- Computation time reduced in comparison to a full FDTD computation
- Computation time increases with frequency
- Available in CIVA for 2D computations

Module dedicated to composite materials released in 2016

7

SPECIMENS

Curved composite laminates

Stiffeners

Complex shaped composite laminates

MATERIALS

Specific GUI to define stacking sequence

WCNDT 2016 | Jezzine Karim

SPECIFIC FLAWS

ACCOUNT OF ATTENUATION BY POST-PROCESSING

🛄 Specimen	- -
File	
Geometry Material Overall attenuation	
	Attenuation law Polynomial attenuation law
	Table O Curve
	Frequency
0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1	Attenuation
5- 1- 0.0 1.0	2.0 3.0 4.0 4.4

- Obtained from experimental data
- Accounts for viscoelasticity of the resin, scattering by carbon fiber, porosities
- Sliding FFT window algorithm

> Context: CIVA-COMPOSITE

- Hybrid modelling for the simulation of composite inspections
- Simulation results and validations
- > Conclusions & Perspectives

FDTD MODEL DEVELOPPED BY AIRBUS

Finite Differences in Time Domain (FDTD): Virieux scheme

Stress-velocity formulation

Leap-frog scheme in time

Staggered grid in space

Discretized equations

$$V_{x_{ij}}^{n+\frac{1}{2}} = V_{x_{ij}}^{n-\frac{1}{2}} + \frac{1}{\rho_{ij}} \frac{\Delta t}{\Delta x} \left(\Sigma_{xx_{i+\frac{1}{2}j}}^{n} - \Sigma_{xx_{i-\frac{1}{2}j}}^{n} + \Sigma_{xy_{ij+\frac{1}{2}}}^{n} - \Sigma_{xy_{ij-\frac{1}{2}}}^{n} \right)$$

$$\Sigma_{xx_{i+\frac{1}{2}j}}^{n+1} = \Sigma_{xx_{i+\frac{1}{2}j}}^{n} + \frac{\Delta t}{\Delta x} \left\{ C_{11_{i+\frac{1}{2}j}} \left(V_{x_{i+1,j}}^{n+\frac{1}{2}} - V_{x_{ij}}^{n+\frac{1}{2}} \right) + C_{12_{i+\frac{1}{2}j}} \left(V_{y_{i+\frac{1}{2}j+\frac{1}{2}}}^{n+\frac{1}{2}} - V_{y_{i+\frac{1}{2}j-\frac{1}{2}}}^{n+\frac{1}{2}} \right) \right\}$$

FDTD stability conditions (2D):

$$\begin{cases} \Delta x \le \lambda_{\min}/20\\ \Delta t \le \frac{\Delta x}{c_{\max}\sqrt{2}} \end{cases}$$

WCNDT 2016 | Jezzine Karim

Use of PMLs (Perfectly Matched Layers) on the box boundaries (no reflections)

Source terms in FDTD code

$$F_i = \frac{\Delta T}{\rho} \, \delta p^{(inc)} \Big/ \frac{\Delta x}{2}$$

> Context: CIVA-COMPOSITE

- Hybrid modelling for the simulation of composite inspections
- > Simulation results and validations
- > Conclusions & Perspectives

Geometry

- Quasi isotropic laminated plate [0/+45/90/-45]
- Total thickness: 12mm (24 plies)
- Intermediate epoxy layers : 15µm thick

Material properties

- Epoxy : ρ = 1.23 g cm-3, V_L = 2500 m s⁻¹, V_T = 1140 m s⁻¹
- Unidirectional CFRP ply : ρ = 1.6 g cm-3

	/155	5	5	0	0	0	
		13	7	0	0	0	
Hooke tensor:			13	0	0	0	
		0		3	0	0	
					6	0 /	
	× ×					6/	

Theoretical resonance frequency ~ 3Mhz (V_{L0}/ply thickness/2)

Data Simulation Results (K8) : AScan 🛛 😫 🗳 🛛 TIME (µs)

60.86

without intermediate AMPLITUDES (dB) epoxy layers - 00 Data Simulation Results (N11) : AScan 📋 🖾 🛛 📕 Data Simulation Results (L9) : AScan 🛛 😫 🖾 🗡 TIME (µs) TIME (µs) 60.9 60.93 with intermediate

- 00

epoxy layers

🗖 Data Simulation Results (M10) : AScan 🛛 🖯 🗆 🗙

TIME (µs)

61.11

AMPLITUDES (dB)

🗖 Data Simulation Results (O12) : AScan 🛛 🖯 🗳 🛛

Data Simulation Results (P13) : AScan 🖯 🗉 🛛

TIME (µs)

TIME (µs)

60.8

AMPLITUDES (dB)

Validation on a CFRP panel with two different transducers

Material type	Pre-preg
Material	CFRP n°1
Thickness of the area	7.23 mm (28 plies)
Total ply thickness (including resin interface)	0.259 mm
Resin interface thickness	15 μm

Theoretical resonance frequency ~5,8MHz

Material properties (Cij, ρ and $\alpha(F)$) were measured by Airbus and used as input of the models

	Probe 1: Metalscan Aero C	Probe 2: Metalscan Aero C		
	n°034801-4	n°034801-2		
Туре	Single-crystal	Single-crystal		
Crystal shape	Flat	Flat		
Crystal diameter	6 mm	6 mm		
Nominal freq.	3.5 MHz	5 MHz		
Peak freq.	3.2 MHz	4.7 MHz		
Bandwidth	60 %	55 %		
<u>@</u> -6dB				

Experimental and simulated Ascans

- Central frequency and bandwidth are adjusted to fit the frontwall echo
- Attenuation due to viscoelasticity is applied by post-processing using a sliding window over the signal.

The amplitude of the backwall echo and the structural noise is well predicted by the model

SURFACE ADAPTATIVE ULTRASONIC (1/2)

Phase array inspections with SAUL

- SAUL is an iterative process that adapts the wavefront to enter the component with a normal incidence
- Delays laws are computed using the frontwall echo
- All the elements of the array are fired simultanously
- Time of flight measurement on each element in reception

Emission delay law
$$\underline{E}$$
: $E_n^{(j+1)} = \frac{1}{2} \left[Max \left(t_1^{(j)} \right) \right]$

Reception delay law R :

$$E_n^{(j+1)} = \frac{1}{2} \Big[Max \left(t_1^{(j)}, t_2^{(j)}, \dots, t_n^{(j)} \right) - t_n^{(j)} \Big] + E_n^{(j)}$$

$$R_n^{(j+1)} = Max\left(E_1^{(j+1)}, E_2^{(j+1)}, \dots, E_n^{(j+1)}, \dots, E_n^{(j+1)}\right) - E_n^{(j+1)}$$

SURFACE ADAPTATIVE ULTRASONIC (2/2)

- 32 elements probe, 4MHz,
- Delay laws computed from frontwall echo

SAUL gives a flatter echo with higher amplitude

> Context: CIVA-COMPOSITE

- Hybrid modelling for the simulation of composite inspections
- Simulation results and validations
- > Conclusions & Perspectives

- Airbus Group Innovations FDTD code has been integrated in CIVA for composite applications
- Dedicated GUI features have been implemented.
- Further improvements include
 - Account of dispersion
 - Integration of 3D code
- Contact and demonstration for CIVA: visit EXTENDE stand

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019