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ABSTRACT 

In the context of the damage tolerance approach used to drive aircraft maintenance operations, it is 

essential to demonstrate the reliability of NDE inspections in detecting structural damage. The 

Probability Of Detection method, that links the probability to detect a detrimental flaw to its size is 

generally used for that purpose by giving the maximum flaw size that a NDE process can miss with a 

given level of probability and confidence. To be statistically valid, this approach requires a sufficient 

amount of data which is often difficult (and costly) to obtain with a purely experimental approach based 

on mock-up tests. Numerical simulation can be particularly useful at that stage thanks to its ability to 

give a very large amount of data at a relative low cost, which constitutes the so called Model Assisted 

POD approach. Recent developments have even enhanced this capacity thanks to the implementation in 

CIVA simulation software of metamodels. On top of providing data for POD curves, simulations and 

metamodels can be also used at the design stage to optimize inspection methods and procedures and 

target a given POD for a given flaw size. It can also conduct extensive studies on parameters influence 

on the result, or to achieve sensitivity analysis. This communication illustrates, with some examples 

based on CIVA, how simulation can help to support NDE reliability studies in aerospace applications. 
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INTRODUCTION 

 

The simulation plays an increasing role in NDE, allowing helping the design of inspection methods, their 

qualifications or the analysis and understanding of inspection results, while reducing the number of physical mock-

ups and trials. A lot of validation efforts have been put around the CIVA software to give evidence of models 

validity in order to be fully considered as a reliable element to support technical decisions and justifications [1].  

In the context of NDE reliability studies, extensive parametric analyses are required in order to identify essential 

parameters that can affect the NDE performance. Such studies need a large amount of data which is often difficult 

and costly to obtain with a set of purely experimental results. Probability Of Detection methods, that links the 

probability to detect a detrimental flaw to its size is generally used for NDE reliability evaluation in the aerospace 

sector. The statistical validity of this approach is also dependent on a sufficient amount of data. Numerical 

simulation tools can be particularly useful at that stage thanks to its ability to give a very large amount of data at a 

relative low cost. It can also help to explore deeper and more precisely some parameters variability that can be 

difficult to monitor in an experimental Design Of Experiment. In addition to classical “numerical” simulations, 

“Metamodels” or “surrogate models” becomes now available, which drastically ease the capacity to generate an 

even larger amount of data. For parametric and sensitivity analyses, or Model Assisted POD studies, such tools give 

access to results (such as Sobol Indices, beam of POD curves, non-parametric POD curves) that simply cannot be 

reached with experimental studies. This paper will illustrate the benefits of the modelling and metamodeling 

approach available in the CIVA simulation platform for sensitivity and POD analyses in the context of aerospace 

inspection reliability studies. 

 



 

I Models implemented in CIVA software 

 

1.1 Overview of the CIVA software modelling approach 

The development of CIVA software started in the early 90s first for ultrasonic application. Then, this package 

became commercially available and has started to be widely and even extensively used by the NDE industrial 

community from the years 2000s, in different industrial sectors such as power industry, aerospace and 

transportation, oil & gas, mechanical or steel industry. 

The various modules of CIVA give access to different NDT methods and techniques: Ultrasonic Testing (UT), 

Guided Waves Testing (GWT), Eddy Current Testing (ET), Radiographic Testing (RT) & Radiographic Computed 

Tomography (CT). All these modules are available in the same environment, bringing to the users a unique NDT 

oriented Graphical User Interface. The mathematical formulations used in the different modules often rely on semi-

analytical models. This approach allows solving a large range of applications while offering very competitive 

calculation time compared with purely numerical methods (FEA, etc.). For instance, the UT module relies on a rays 

theory geometrical approach to compute beam propagation (the so-called “pencil method”). The interaction with 

discontinuities involves several models depending on the context. Some of them relies on semi-analytical or 

analytical formulations, the Kirchhoff or GTD (which stands for “Geometrical Theory of Diffraction”) model can be 

mentioned but other ones have also been implemented to cover several configurations. Such model can for instance 

tackle the simulation of ultrasonic waves propagation in composite structures such as Carbon Fiber Reinforced 

Polymer ones. The anisotropic nature of the composite medium is accounted for with a homogenized approach as 

well as the change of fiber orientation due to the part curvature. In CIVA Eddy Current, the main part involves 

Volume Integral and Boundary Element Methods to compute the field/Flaw perturbation phenomenon, which only 

requires a numerical sampling of the flaw. The electromagnetic field induced in the work piece will be either 

calculated based either on analytical expressions, modal approaches based on truncated regions or more numerical 

Surface Integral equations depending on the complexity of the eddy current probe and the component geometry.  

In order to continue the extension of the application fields of CIVA, it is sometimes necessary to rely on more 

general numerical approaches (FEM, Finite Difference, etc.). To keep the benefits of the semi-analytical strategy, 

the current trend within CIVA is to build hybrid models, a part of the computation being done by fast semi-

analytical models, another part being completed by numerical approach when necessary for the validity of the 

results. For instance, such a coupling between semi-analytical and Finite Difference or more recently with Finite 

Element are used to simulate a composite medium when a ply per ply approach is required instead of the 

homogenized one mentioned above. For interested readers wishing to have more information on the models, the 

following reference papers are available, [2] and [3] for the Ultrasonic tool, [4] for the Guided Waves module [5] for 

the Eddy Current part, [6] for the radiographic one and [7] for the CT module. For more details on composite 

modelling, another article can be mentioned [8]. 

 

1.2 Metamodeling approach in a few words 

A metamodel or surrogate model can be defined as a “model of the model” or a “smart interpolator” which is built to 

replace a physic-based model. The first step consists in computing a data base of simulation results for a given range 

of multi parameters variation. From this data set is built the meta-model which allow ultra-fast exploration of the full 

range of parameters variation. Thanks to the computational speed reached with metamodel, it becomes possible to 

achieve statistical analysis on data such as sensitivity and POD studies. For instance, Sobol indices can be computed 

from metamodel output in order to quantify the relative importance of influential parameters. Various Design of 

Experiments methods can be selected to build the data base, based on a fixed number of computed configurations or 

based on adaptive sampling. This can be a Full Factorial design (range of variation and number of values for each 

parameter explicitly defined) but other drawing schemes based on pseudo random sequences of parameters value 

can be also selected (Latin Hypercube Sampling, Sobol, Halton), which generally reaches a better metamodel 

accuracy with a much smaller amount of computations. Adaptive Sampling consists in building the data-set by 

estimating at each step the accuracy of the meta-model until reaching a given convergence criterion. Also, several 



 

interpolators can be applied to build the metamodel from the database (Multilinear, Radial Basis function, Kriging, 

etc.). Interested readers can refer to the following paper for more detailed information on the metamodels currently 

implemented in the CIVA software [9].  

 

II Background in Probability of Detection and MAPOD 

 

2.1 POD Methodology 

In the aerospace sector, the damage tolerance approach is used to drive aircraft maintenance operations. This 

approach requires the knowledge of the defection performance (the reliability) of the NDE process. The Probability 

Of Detection method, that links the probability to detect a detrimental flaw to its size is generally used for that 

purpose by giving the maximum flaw size that a NDE process can miss with a given level of probability and 

confidence.  The POD methodology currently adopted by the aircraft industry is described in the Military Handbook 

1823A [10]. It is based on a parametric estimation of the POD following Berens models, which is adopted also in 

some ASTM standards [11, 12]. 

Statistical analysis is defined for two different data formats: Either binary information is only provided (defect 

detected or not detected), the so-called Hit Miss approach, either the signal amplitude is recorded, the so-called « â 

vs a » or « Signal response » approach. The hypotheses to be satisfied as well as the statistical analysis depend on 

the selected approach. 

 

2.2 Model Assisted POD  

Determination of POD curves via a purely experimental approach requires large-scale experiments performed on 

representative test-blocks containing representative defects. For instance, the MH1823a states that a minimum 

amount of 40 different defects location shall exist in the trial mock-ups when a Signal response analysis is 

performed, while this minimum is 60 for a Hit-Miss analysis. Then, to be representative of the “real POD”, this 

experiment shall “capture” the variability of the influent parameters in real inspections. 

The use of numerical simulation to determine POD curves (known as MAPOD [13]) has been a subject of research 

in the past years and has been used in various industrial context (Ref [14] to [19]). Recently, efforts have been done 

to fix a recognized methodology and in particular let us mention here the best practice guidance and practical 

recommendations published in 2016 by International Institute of Welding [20].  

The methodology, as described in this document, aims at using a numerical model which simulates the results of an 

inspection in order to reproduce the impact of the variability of the influential parameters on the NDE response. The 

key idea consists in introducing variations in the input parameters of the model which lead to the variability on the 

output of the simulation. This variability is then analyzed to calculate the POD curve. The estimation of one POD 

curve by simulation requires: 

1. To define a “nominal” configuration, that is all the parameters needed for simulating one inspection. From 

this nominal configuration are derived the configurations which will be computed by considering the variability of 

some inputted parameters. 

2. To define the characteristic parameter “a” (versus which the POD (a) is calculated) and to identify and 

characterize the sources of variability which will be accounted for by the POD: 

 To define the “aleatory parameters” whose variability will be taken into account  

 To assign a statistical distribution to these parameters 

3. To sample the statistical distributions of aleatory parameters and run the corresponding simulations. 

4. To compute the POD curve from the set of simulated cases.   

The first advantage of using numerical simulation in a POD study is to save time and budget. A second significant 

advantage is the possibility offered by simulation to obtain large sets of data, investigating the effects of the 

variability of numerous influential parameters. Indeed, with simulation tools, it is generally quite fast & easy and 

therefore represents a quite low cost to generate the sufficient amount of data required for POD analyses. This is 

even more the case when metamodels are provided. It is also possible to directly and precisely monitor parameters 



 

variation while it is difficult to control some of them in an experimental campaign (it can be for instance difficult to 

precisely monitor defects orientation and to implement them in a specific zone of the mock-up). Simulation can then 

explore a wider range of parameters value which can give more credit to the POD curve. The first limitation of the 

MAPOD approach is related to the use of a model which always reproduces only partially the reality. Consequently, 

a natural recommendation is to evaluate the accuracy of the predictions provided by the simulation code used in the 

study. A second limitation is linked to the necessity to a priori identify and characterize the sources of variability on 

the result of the inspection. That means to identify the influential parameters whose variability will be investigated, 

and also to have a good knowledge on the statistical distributions describing the variability of those parameters. A 

third limitation is that at this stage, even if this is a subject of ongoing research, the human and organizational 

factors are not accounted for by this approach.  

Besides the calculation of the POD curve entirely from simulation, there are various other possible uses of simulated 

data in complement to experiments. Simulation gives the possibility to help determine the most influent parameters 

in a given inspection, and which defect sizes correspond to the transition zone of the POD curve. As a consequence, 

simulation can be used prior to an experimental campaign in order to help defining the design of experiment as well 

as efficient mock-ups, which can help mastering the costs of a POD campaign. Additionally, simulation gives 

insights on the results that help understanding the physical phenomena which might be also used to help designing a 

more reliable inspection procedure with a given objective of POD. 

 

III Illustrative examples 

In this section, two illustrative cases are shown to describe the tools implemented in CIVA for the POD simulation 

and sensitivity analysis. 

 

3.1 High Frequency Eddy Current Inspection Simulation 

A first example corresponds to a High Frequency Eddy Current Inspection aiming at detecting surface defects in an 

aluminum slab. The testing configuration is represented on the figure below. The component is an aluminum plate of 

5 mm thickness. The inspection is made with a pencil sensor built with a 1.4 diameter coil and a ferrite core of 5mm 

height working in absolute mode. The operating frequency is 1MHz. Surface defects are modelled with thin 

parallelepiped notches. The configuration shown below represents a reference defect of 1mm height, an aperture of 

50 microns and a length of 10mm. The figure shows the configuration as well as the simulated signal obtained 

(impedance plane and X-Y curve). 

 
Figure 1: High Frequency Eddy current model on an aluminum slab, results obtained on a reference defect 

 

The prior list of influent parameters for this inspection included the specimen conductivity, the coil diameter, the 

ferrite core permeability, the lift-off, the orientation of the probe (normal to the surface or with a tilt angle), the 



 

scanning path over the defect, and the width and height of the defects. After a first impact analysis, 4 main essential 

variables were kept in the design of experiment with the following range of variation: 

 Lift-off [0.15mm; 0.5mm] 

 Sensor orientation [-5°; +5°] 

 Defect height [0.5mm; 3mm] 

 Defect aperture [0.03mm; 0.07mm] 

The defect length has been also of course investigated and has been even selected as the characteristic parameter, i.e. 

the one which will represent the defect size “a” for the future POD analysis. A metamodel has been calculated based 

on a sample of 500 computations. The total computation time was about 20 hours on a standard PC (about 2 minutes 

for each case scan). The following graph (so-called “parallel plot”) represents the map of the different parameters 

computed in order to build the metamodel database and an overview of the results obtained for the whole cases. The 

5 first columns represent the values assigned to the variable input parameters (a Sobol sampling scheme has been 

used here) and the 6
th

 column on the right shows the corresponding results (amplitude of sensor signal generally). 

This parallel plot also helps identifying at a glance for instance which cases give the lowest signals or how is 

affected the output variability when you limit one or several parameters to a given range: 

 
a)                                                                                    b) 

Figure 2: Parallel plot of the simulations (5 first columns: parameter values; 6
th

 column: Signal amplitude) 

a) All Cases, b) highlighted cases for a limited range of one parameter 

 

In order to use the metamodel results and not only these 500 points of the parametric grid, the metamodel accuracy 

should be first evaluated. A graph of the fit obtained between the metamodel and simulated results is provided in the 

user interface. This “True vs predicted” graph is obtained with a cross validation methodology. A part of the 

samples are used to build the metamodel and these results are compared to the other part of the samples. A 

measurement of the error is then performed. In our example, the fit looks correct with 90% of the samples below 

10% error. A higher relative error level (points in orange and red) is obtained only for low signal amplitudes.  

 
Figure 3: Validation of the metamodel accuracy  

 

1D or 2D parametric plots can then be obtained from the metamodel database in order to illustrate the impact of a 

single of two different parameters on the output signal, while cursors give the user the ability to select which fixed 

value is assigned for the other parameters. 



 

    
a)                                                                                    b) 

Figure 4: Parametric analysis a) 1D (e.g. impact of sensor orientation) b) 2D (e.g. impact of defect length 

(ordinate) and lift-off (abscissa) on the output signal (color map)) 

 

A sensitivity analysis using the Sobol indices (based on variance decomposition computations) can be also 

performed. This can be summarized as the graph 5 below where the shared influence of each parameter on the 

output variability is quantified. In this case, as expected, the lift-off influence (in purple) is really predominant 

compared to the other parameters (Probe orientation in blue, defect aperture in yellow, and defect height in orange, 

the defect length has been set constant for this analysis here): 

 
Figure 5: Sensitivity analysis with Sobol indices  

 

This sensitivity analysis uses the statistical distribution assumed for each parameter, which was in our example: 

 

 Lift-off: Exponential distribution with a minimum value of 0.15mm, 

a mean value of 0.2mm and a max value of 0.5mm 

 
 

 

 Probe orientation: Normal distribution with a 0° mean value, a 

standard deviation of 2°, and a minimum and maximum limit of -5° 

and +5°  
 

 

 Defect aperture: Uniform distribution between 0.03mm and 0.07mm 

 
 



 

 

 

 Defect height: Uniform distribution between 0.5mm and 3mm 

 
A POD analysis can then be launched from the metamodel database. The following â vs a graph represents the 

obtained data for a set of 20 defect lengths taken from 0.2mm to 3.5mm and with 20 different results obtained for 

each defect length. A Signal Response analysis is performed. The detection threshold is defined (set at -12dB versus 

the response of an “infinite” length reference defect shown earlier) as well as potentially two other thresholds 

representing the saturation threshold (right censoring) and the noise level (left-censoring). 

 (a) 
 

 (b) 
 

Figure 6: “â vs a” graphs, linear regression curves and statistical tests validating the assumption of the Signal 

response analysis. a) log/log transform used to represent the data for the linear regression curve  

b) log/box-cox transform used 

 

Some coefficients and statistical tests are provided to help validating the different hypotheses that the data should 

verify in Signal Response analysis: linearity (the coefficient of determination, closer as possible to 1, a lowest 

possible level of quadratic errors), homoscedasticity (variance stability for the whole range of defect lengths) and 

normality of the error. These statistical tests are here evaluated both when applied a log/log transform (figure 6a) 

and when is applied a second transformation called Box-Cox (figure 6b). Once the model is selected, a POD curve 

can be derived and displayed. The a90/95 is here obtained for a defect size very close to the a90 value, illustrating the 

really thin confidence bound achieved here. Indeed, as discussed before, in a MAPOD study it may be difficult to 

have a precise knowledge on the variability of the influential parameters of the inspection. In the MAPOD 

methodology this variability is an input of the process and hypotheses are made on the statistical distributions 

assigned to the aleatory parameters. Thanks to metamodel and their ability to provide ultrafast computations, it is 

possible in CIVA to estimate the sensitivity of the POD estimation to these hypotheses. Thus has been implemented 

the possibility to introduce a variability on the statistical distributions and calculate “beams of PODs” following the 

approach proposed by N. Dominguez [21]. The user gives a level of confidence for the input statistical distribution 

(here, the mean value of the lift-off as well as the standard deviation of the probe orientation distribution were 

considered as uncertain). Then, a Monte-Carlo sampling is performed on these distributions parameters, which lead 

to a new POD curve for each test. In the case presented here, a beam of 100 POD curves (representing a set of 

40 000 data points!) is shown on Figure 7 to illustrate this functionality. The 100 PODs have been computed and 

displayed in only 8 seconds. The variations on the parameters have been chosen here in a somehow arbitrary way.   



 

 

 
Figure 7: Simulated POD curve (above) then Beam of POD curves calculated  

to estimate the reliability of the simulated POD 

 

3.2 Engine disk UT inspection 

A second example illustrates an immersion ultrasonic inspection of an engine disk made of nickel super alloy. 

Typical defects are represented with Flat Bottom Holes. A Pulse-Echo single element probe is used, operating at 

5MHz, working at normal incidence and focused with a 225mm curvature radius.  The nominal testing configuration 

modelled in the CIVA software is represented below as well as the obtained A-Scan and B-Scan.  

 
Figure 8: Engine Disk UT inspection simulation  

 

The list of influential parameters has been established at the following one with an associated range of variation: 

 Probe signal center frequency [4.8MHz; 5.2MHz] 

 Incidence angle [-3°; 3°] 

 Water path [75mm; 85mm] 

 Attenuation coefficient at 5MHz [40dB/m; 60dB/m] 

 Defect orientation vs outer surface [-5°; +5°] 



 

A metamodel has been computed based on a sample of 800 parametric variations to cover the above range. It took 

only 2 hours to compute the full set of simulations. As for the ET example, a first evaluation of the metamodel fit 

has to be performed and is shown below as well as a parallel plot of the performed calculations. The True vs 

Predicted fit is here very good with 98% of the data below 10% relative error on the signal amplitude. 

 
Figure 9: Validation of the metamodel accuracy for the UT case 

 

A sensitivity analysis is then performed and shows that the flaw orientation (in red) is evaluated as the most influent 

parameter with 50% of relative influence on the output variability. But some other parameters show also a non-

negligible impact (incidence angle in light blue, center frequency in dark blue and attenuation level in orange).  

  
Figure 10: Sensitivity analysis with Sobol indices for the UT inspection case 

 

A POD curve is then derived from these results. The following one is plotted by selecting 30 defect sizes (FBH 

diameter) linearly distributed between 0.5 and 3.5mm and 40 results per defect size, all data being collected in real 

time from the metamodel database. The detection threshold is set at -6dB versus the amplitude level recorded for a 

reference FBH of 3mm in a planar block. As it can be observed on figure 11, in this case the statistical assumptions 

are not valid for a signal response analysis regarding the normality of the scattering and the homoscedasticity.  

 
 

Figure 11: “â vs a” graphs, linear regression curves and statistical tests not fulfilled here with a Signal 

response analysis leading to selecting a Hit-Miss POD.  



 

However, a Hit/Miss analysis can be performed in the same way. Indeed â vs a analysis is, when possible, preferred 

in experimental studies because the amplitude information can improve a statistical analysis limited by the number 

of available data. Simulation offering the possibility to obtain enough data, Hit miss analysis is generally preferred 

when using simulation [IIW]. In Figure 12 is shown the Hit miss POD curve obtained on this illustrative case 

performed (using logit link), the obtained POD curve gives a a90/95 value of 1.9mm. 

Let us also mention the possibility offered by CIVA to calculate “non-parametric” POD curves. Such option allows 

overcoming the usual hypotheses of the parametric models [22]. Here, we directly calculate the Hit/Miss ratio for 

each defect size. Again, such method is relevant here only because, thanks to the metamodel, we can provide at low 

cost a tremendous number of data. The “non-parametric” POD can be used in order to assess the hit miss POD 

curve. In the present case Hit/Miss and non-parametric POD curves are superimposed demonstrating the validity of 

Hit/Miss assumptions.  

 

 
Figure 12: Simulated POD curve (above) with a Hit-Miss analysis then compared to a non-parametric curve 

(below) to estimate the reliability of the simulated POD 

 

As for the previous case, a beam of POD might be calculated to evaluate the sensitivity to the statistical distribution.  

In the same way it is also possible to estimate if a better mastering of the inspections parameter could help reaching 

a “better POD”. It is just a question of resampling the data which is easy and a kind of real time operation thanks to 

metamodels. For instance, below is displayed the POD curve if no variability is assumed on the inspection 

conditions (water path, incidence angle) but only on specimen and defect parameters. The POD reaches thena a90/95 

of 1.8mm for this detection threshold (see figure 13).  

 
Figure 13: Obtained POD curve with other hypotheses on the inspection parameters variability (fixed values) 



 

CONCLUSION 

 

Simulation tools gathered in the CIVA platform provide an efficient solution to support NDE reliability study. In 

particular, the recent introduction of metamodels offers new possibilities such as real-time resampling of the data 

which is particularly useful to perform sensitivity analysis (Sobol indices evaluation) or advanced POD analysis 

(assessment of statistical models, beam of POD curves, or even non parametric POD curves, etc.). Simulation can 

then be used either to help defining the design of Experiment for an experimental campaign, to compute directly the 

POD curves or to give insights for inspection method optimization to reach a targeted value of POD.  

 

REFERENCES 

 

(1) F. Foucher, S. Lonné, G. Toullelan, S. Mahaut, S. Chatillon, 2018, An overwiew of validation campaigns of the 

CIVA simulation software, ECNDT. 

(2) S. Mahaut, S. Chatillon, M. Darmon, N. Leymarie and R. Raillon, 2009, An overview of UT beam propagation 

and flaw scattering models in CIVA, QNDE. 

(3) M. Darmon, S. Chatillon, 2013, Main Features of a Complete Ultrasonic Measurement Model: Formal Aspects 

of Modeling of Both Transducers Radiation and Ultrasonic Flaws Responses, Open Journal of Acoustics, 

Vol.3 No.3A, http://file.scirp.org/Html/8-1610079_36873.htm#txtF2. 

(4)  V. Baronian, A. Lhémery, K. Jezzine, 2010, Hybrid SAFE/FE simulation of inspections of elastic waveguides 

containing several local discontinuities, QNDE. 

(5) G. Pichenot et al., 2005, Development of a 3D electromagnetic model for eddy current tubing inspection: 

Application to steam generator tubing, QNDE. 

(6) J.Tabary, P. Hugonnard, A.Schumm, R. Fernandez, 2008, Simulation studies of radiographic inspections with 

Civa, WCNDT. 

(7) R. Fernandez, S.A. Legoupil, M. Costin, A. Leveque, 2012, CIVA Computed Tomography Modeling, WCNDT. 

(8) K. Jezzine et al, 2017, Modeling approaches for the simulation of ultrasonic inspections of anisotropic 

composite structures in the CIVA software platform, QNDE. 

(9) R. Miorelli et al, Database generation and exploitation for efficient and intensive simulation studies, AIP 

Conference Proceedings, Volume 1706 (2016)  

(10) USA Department of Defense Handbook, 2009, MIL-HDBK-1823-A, NDE system reliability assessment.  

(11) ASTM, 2012, E2862-12: Standard practice for probability of detection analysis for hit/miss data. 

(12) ASTM, 2012, E3023-15: Standard practice for probability of detection analysis for â versus a data. 

(13) B. Thompson et al, 2009, Recent Advances in Model-Assisted Probability of Detection, European-American 

Workshop on reliability in NDE. 

(14) Aldrin, J.C., Knopp, J.S., Lindgren, E.A., Jata, K.V., Model-assisted probability of detection evaluation for 

eddy current inspection of fastener sites, AIP Proceedings, Volume 1096, 2009, Pages 1784-1791 

(15) F. Jenson et al, 2010, Simulation supported POD: methodology and HFET validation case, QNDE 

(16) Dominguez, N., Feuillard, V., Jenson, F., Willaume P., 2012, Simulation assisted POD of a Phased Array 

Ultrasonic Inspection in Manufacturing, Rev. of Prog. In QNDE, Vol 31 (2012) pages 1765-1772 

(17) B. Chapuis et al, 2014, Simulation supported POD curves for automated UT of pipeline girth welds, welding in 

the world, V58, 433-441 

(18) M. Pavlovic et al, 2016, Reliability Analysis of the Ultrasonic Inspection System for the Inspection of Hollow 

Railway Axles, WCNDT. 

(19) G. Ribay et al, 2016, Model-based POD study of manual ultrasound inspection and sensitivity analysis using 

metamodel, AIP Conf. Proc. 1706 (2016) 

 (18) N. Dominguez et al, 2014, POD Evaluation using simulation: PAUT case on a complex geometry part, AIP 

Conf. Proc. 1581, 2031 

http://file.scirp.org/Html/8-1610079_36873.htm#txtF2
https://www.scopus.com/sourceid/26916?origin=recordpage
https://www.scopus.com/sourceid/26916?origin=recordpage


 

(20a) B. Chapuis, P. Calmon, F. Jenson, 2016, Best practices for the use of Simulation in POD Curves Estimation, 

IIW Collection. 

(20b) P. Calmon and al, 2016, The use of simulation in POD curves estimation: An overview of the IIW best 

practices proposal, WCNDT 

(21) N. Dominguez et al, 2013, A new approach of confidence in POD determination using simulation, QNDE. 

(22) Spencer, F.W., Nonparametric Pod Estimation for Hit/miss Data: a Goodness of Fit Comparison for 

parametric Models, Review of Quantitative Nondestructive Evaluation, AIP Conference Proceedings, 2011 


