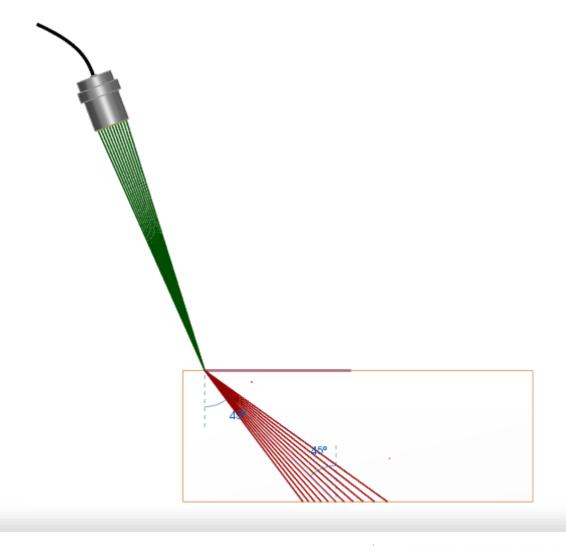
Bob Shaffer

Ultrasonic Inspection: Transducer Design for Forging Inspection

Outline

- 1. Application: 45S Immersion testing of critical Forging component
- 2. Customer needs to reduce inspection time
- 3. Linear Array vs. Conventional to reduce number of mechanical indexes
- 4. Calibration Block and Data from Existing Inspection

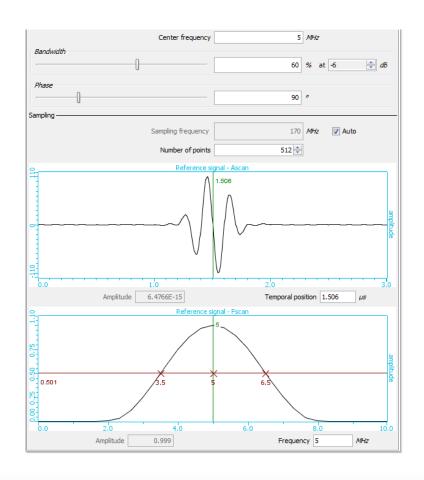


Existing Immersion Test Specifications

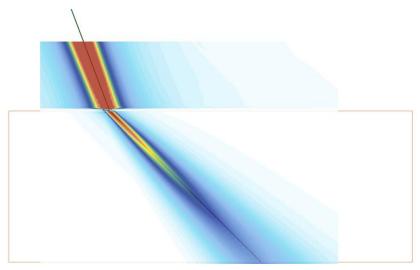
17 Transducer Specifications			
Element Size (in.)	0.75		
Frequency (MHz)	5.0		
Focus (in.)	6.0		
BW%	60		

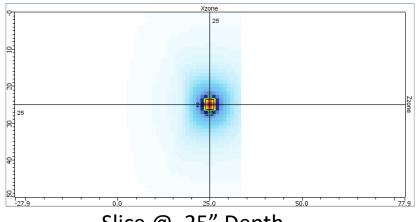
Immersion Test Specifications		
Test angle/Mode	45 S	
Water Path (in.)	6.0	
Index (in.)	0.04	

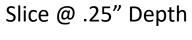
Calibration Block Specifications		
Material	Rene 95	
SDH Size (in.)	0.02	
SDH Depth 1 (in.)	0.25	
SDH Depth 2 (in.)	2.0	
Shear Velocity (in/uS)	0.117	

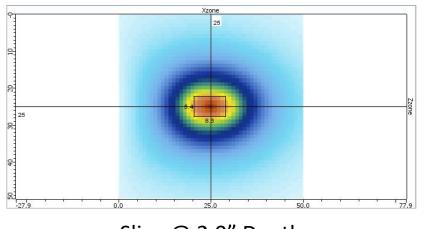


CIVA Model of Existing Immersion Transducer

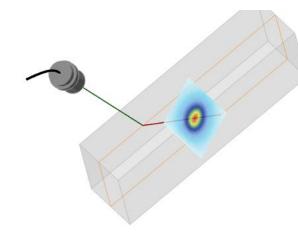

- Beam Computation performed of existing test.
 - Transducer Parameters same as I7.
 - Reference signal shown at left.
 - Calibration Block same as existing.
 - Benchmark Beam formation in Calibration Block.
 - Slice along Shear Axis
 - Slice Perpendicular to Shear Axis @ .25" depth.
 - Slice Perpendicular to Shear Axis @ 2.0" depth.
- Inspection Simulation performed for Calibration Block SDH responses.
 - .02" SDH @.25" Depth
 - .02" SDH @ 2.0" Depth




Beam Computation Results



Slice along Shear Axis, +21 dB added to show Beam formation in Block


Beam Size (mm)				
Depth (in.) -3dB (X-Zone) -3dB (Z-Zone) -6dB (X-Zone) -6dB (Z-Zone)				-6dB (Z-Zone)
0.25	2.6	2.2	3.8	3.2
2.0	5.4	8.6	9.8	14.5


Slice @ 2.0" Depth

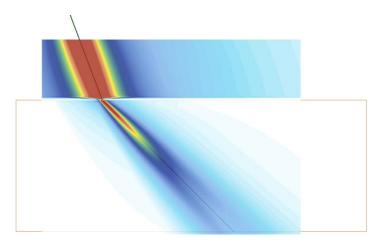
Inspection Simulation Results

CIVA Modeling of a Phased Array to duplicate Be formation and SDH response of the I7 Transduce

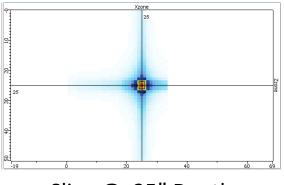
- Using the Beam Computation and Inspection Simulation results above for the I7, define and model a Phased Array that produces similar results.
 - Model an Immersion test same as existing.
 - Start with a Phased Array that has Total Aperture approximately the same size as I7.
 - Same Frequency as I7.
 - Secondary Axis (Elevation) Focus = 6.0".
 - Focus Primary Axis at 6.0" (Surface).

Phased Array Specifications	
Primary Axis Aperture size (mm)	20
Secondary Axis Aperture Size (mm)	20
# Elements	20
Pitch (mm)	1.0
Fequency (MHz)	5.0
Bw%	65

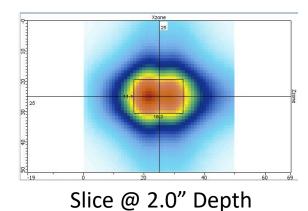
	8:
	0.0 2.0 Amplitude
<u>l</u>	· _
Calibration Block Specifica	ations
Material	Rene 95
SDH Size (in.)	0.02
SDH Depth 1 (in.)	0.25
SDH Depth 2 (in.)	2.0
Shear Velocity (in/uS)	0.117

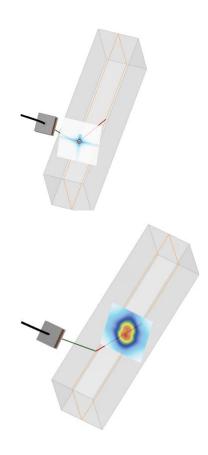

Bandwidth	Center frequency	5 MHz
,		65 % at -6 🕏 dt
Phase		
-		90 °
Sampling ——		
	Sampling frequency	170 MHz 📝 Auto
	Number of points	512
9	Reference si	gnal - Ascan
-110		1.508
0.0	1.0	2.0
	Amplitude 6.5364E-15	Temporal position 1.506 μs
<u> </u>	Reference si	
1		.5
5.75		
e-		
0.501	/3.38	6.62
0.25		
8:		
0.0	2.0 4.0	6.0 8.0 10
	Amplitude 1	Frequency 5 MHz

Immersion Test Specifications		
Test angle/Mode	45S	
Water Path (in.)	6.0	
Index (in.)	0.04	



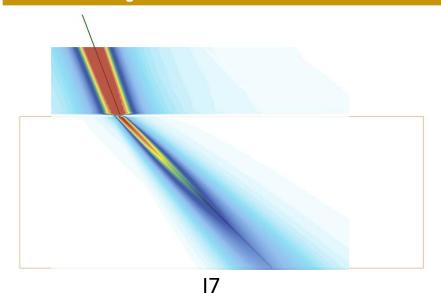
Beam Computation Results




Slice along Shear Axis, Sensitivity referenced to I7 Beam Computation, +21 dB added to show Beam formation in Block

Beam Size (mm)				
Depth (in.)	-3dB (X-Zone)	-3dB (Z-Zone)	-6dB (X-Zone)	-6dB (Z-Zone)
0.25	2.3	1.9	3.3	3
2.0	11.1	16.2	16.1	22

Slice @ .25" Depth



Comparison to 17 Results

Beam Size (mm) Depth (in.) -3dB (X-Zone) -3dB (Z-Zone) -6dB (X-Zone) -6dB (Z-Zone)

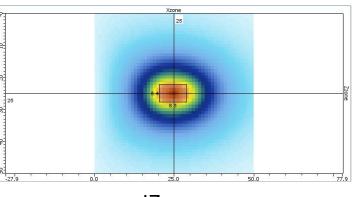
2.2

8.6

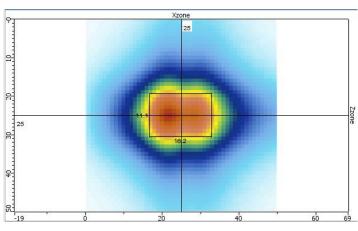
3.8

9.8

3.2


14.5

2.6


5.4

Phased Array

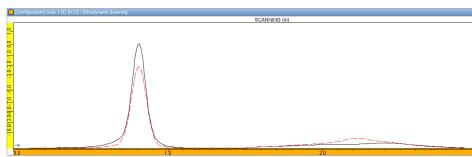
Beam Size (mm)				
Depth (in.)	-3dB (X-Zone)	-3dB (Z-Zone)	-6dB (X-Zone)	-6dB (Z-Zone)
0.25	2.3	1.9	3.3	3
2.0	11.1	16.2	16.1	22

17 Slice @ 2.0" Depth

Phased Array Slice @ 2.0" Depth


0.25

2.0



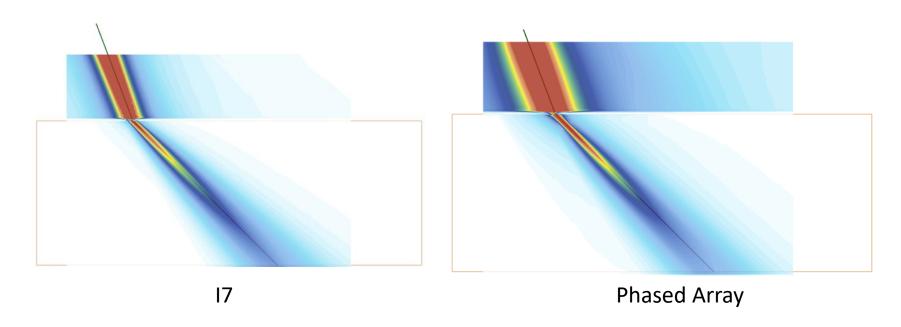
Inspection Simulation Results

Superimposition of I7 and Phased Array Scanning Envelopes. Dashed Red is I7.

Sensitivity set relative to the I7 Inspection Simulation. .25" Deep SDH is +2.2 dB compared to I7 and 2.0" SDH is -5.7dB. Relative Amplitude of the 2.0" SDH to the .25" SDH is -26.2dB

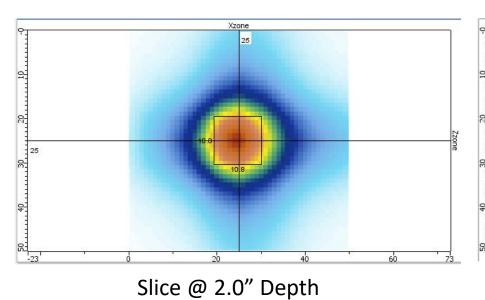
Initial Conclusions

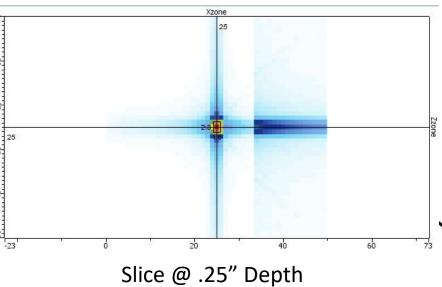
- The Beam Formation in the Block is not as uniform with the Phased Array as the I7 Probe.
- Although the Phased Array is more sensitive at .25" Depth by +2dB, it is less sensitive at 2.0" depth by -5.7dB.
- The relative amplitude of the (2) SDH's is 18.3dB with the I7 and 26.2 dB with the Phased Array.


Next Steps

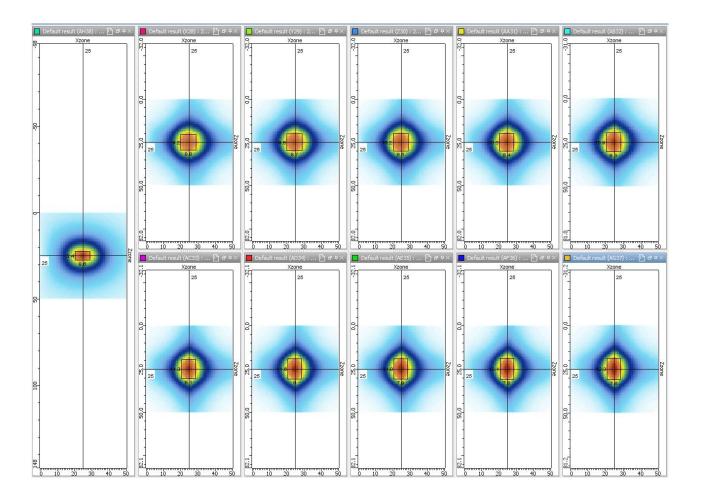
- Using the I7 results as a sensitivity reference for Beam Computation and Inspection simulation
 - Vary the Secondary axis (Elevation) focus and the Primary Axis focus to achieve a Beam uniformity closer to the I7
 - Compare SDH responses with same variants

Beam Computation Results with 7.0" Secondary Axis Focus



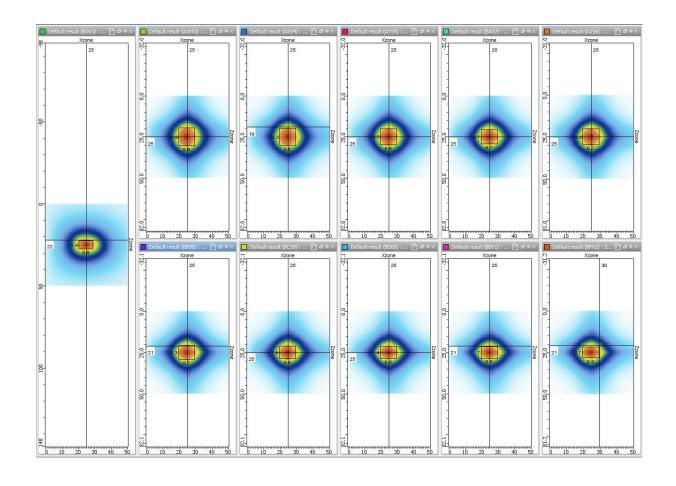

• Increasing the Focus from 6.0" to 7" in the Secondary Axis Produces a more uniform Beam.

Beam Computation Results with 7.0" Secondary Axis Focus

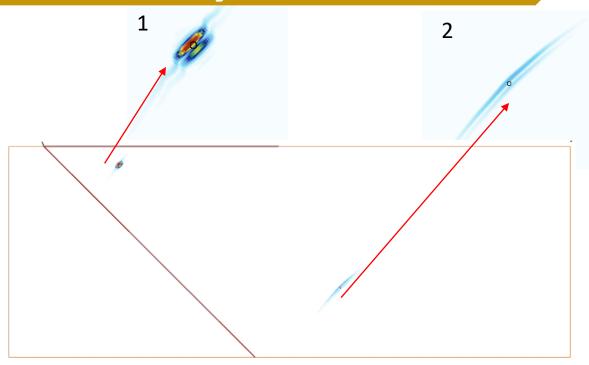

Beam Size (mm)				
Depth (in.) -3dB (X-Zone) -3dB (Z-Zone) -6dB (X-Zone) -6dB (Z-Zone)			-6dB (Z-Zone)	
0.25	2.3	1.6	3.3	2.6
2.0	10.8	10.8	15.8	16.3

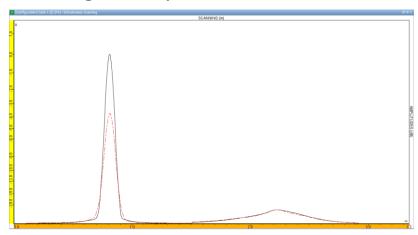
- Parametric Study Varying Elevation Focus of the Array from 7.0" to 8.0"
- -3dB Spot size at 2.0" Depth Perpendicular to Beam
- Z-Zone match at 7.22" FCS

-3dB Beam Size (mm)			
Focus (in.) -3	3dB (X-Zone)	-3dB (Z-Zone)	
17	5.4	8.6	
7.00	9.2	8.8	
7.11	9.8	8.7	
<mark>7.22</mark>	<mark>10.2</mark>	<mark>8.5</mark>	
7.33	10.5	8.4	
7.44	10.9	8.3	
7.56	11.3	8.1	
7.67	11.6	8	
7.78	11.8	7.9	
7.89	12.1	7.8	
8.00	12.3	7.6	



- Parametric Study Varying Array active focus from 0mm to 6.35mm Depth
- -3dB Spot size at 2.0" Depth
 Perpendicular to Beam
- Z-Zone match at 7.22" FCS


-3dB Beam Size (mm)			
Focus (mm)	-3dB (X-Zone)		-3dB (Z-Zone)
17		5.4	8.6
0.00		9.6	10.9
0.71		9.6	10.3
1.41		9.8	9.6
2.12		9.7	8.7
2.82		9.7	8.3
3.53		9.7	8.3
<mark>4.23</mark>		<mark>9.8</mark>	<mark>7.9</mark>
4.94		9.8	7.4
5.64		9.8	7
6.35		9.9	6.7



Revised Array Results

Superimposition of I7 and Phased Array Scanning Envelopes. Dashed Red is I7.

Sensitivity set relative to the I7 Inspection Simulation. .25" Deep SDH is +3.7 dB compared to I7 and 2.0" SDH is Equal.

Summary

- Correlating Existing Inspection and Calibration procedure to CIVA model increases confidence in modeling data.
- Provides a target for Probe optimization in CIVA.
- Modeling allows all probe parameters to be evaluated

