

A POD approach by simulation of an industrial ultrasonic inspection

Fabrice Foucher¹, Benoit Dupont²

¹ EXTENDE, Massy, France² French Industrial and Mechanical Technical Centre (CETIM), Senlis, France

Abstract: The reliability of non-destructive testing is a real industrial issue. To address this need, indicators based on the probability of detection (POD) have been developed [1, 2]. They allow to define the detection performance of a NDT inspection technique by considering the variability of influencing parameters. The interest is to provide a statistical indicator to qualify the operating mode for given structure (geometry, material) and inspection technique.

The aim of this work is to evaluate the relevance of this approach in an industrial context and to identify the necessary resources (human, financial, material, etc.). The realization of POD studies can be carried out either experimentally, numerically, or by combining both. The experimental approach requires a significant number of models with calibrated defects of different dimensions, which is difficult to implement and expensive. The studies performed in this project are based on numerical simulations obtained with the CIVA software. It allows to investigate the variability of many parameters and to classify them according to their influence on the final NDT result. The disadvantage of the latter lies in the lesser consideration of the operator's gestures and human factor.

The mechanical structure of interest is a butt-welded assembly with a lack-of-fusion defect perfectly oriented along the "V" bevel. Two ultrasonic inspection techniques are studied: one using a single-element probe and the other using a phased array transducer. All steps leading to the POD curves are implemented. A metamodel-based approach is used to vary several parameter combinations in real time. The most influential parameters on the test results are determined using Sobol indices. Finally, this approach allows to evaluate many test scenarios using the associated POD curves.

[1] A. Berens, NDE reliability data analysis, 17, 689-701, 1989.

[2] MIL-HDBK-1823A – NDE system reliability assessment, US Dept of Defense, 2009.

A POD approach by simulation of an industrial ultrasonic inspection

Romain HODÉ¹, <u>Fabrice FOUCHER²</u>, <u>Benoît DUPONT¹</u>, Jérôme DUDOUS², Laura CLÉMENT², Sébastien LONNÉ²

¹ CETIM

² Extende

ECNDT 2023, Lisbon

EXTE N.D.E CIVA NON - DESTRUCTIVE - EVALUATION

2

Introduction

Context

Reliability required for Non Destructive Testing (NDT)

- Uncertainties during the inspection:
 - Characteristics of the inspected structure (geometry, mechanical parameters, etc.)
 - Defect
 - Probes
 - Performance of the inspection, human factors, etc.
- Need to use statistical indicators such as probability of detection (POD) [1-3]

[1] A. Berens, NDE reliability data analysis, Nondestructive Evaluation and Quality Control, 17, 689-701, 1989.
[2] MIL-HDBK-1823A – Nondestructive evaluation system reliability assessment, US Dept. of Defense, 2009.
[3] B. Chapuis, P. Calmon and F. Jenson, Best Practices for the Use of Simulation in POD Curves Estimation, IIW Collection, 2018.

Introduction

Probability of detection (POD)

- POD curves are a statistical indicator that can be used to estimate the maximum size of a defect that may not be detected by NDT.
- The scope of the study must be considered
 - One NDE technique
 - One component (material)
 - One type of defect
 - One test procedure
- The result is a POD curve as a function of the size of the defect (more generally the characteristic variable) giving two indicators:
 - POD is greater than $90\%(a_{90})$
 - POD with a confidence interval $(a_{90/95})$

3

Introduction

POD Study

Several approaches possible

Experimental

- Advantages
 - Consideration of human factors

Disadvantages

- Difficulty of implementation
- Cost

Numerical simulation

Advantages

Generation of high volumes of data

EXTE N.D.E

- Sensitivity analysis
- Disadvantages
 - Less consideration of human factors

Combination of the two approaches

[3] B. Chapuis, P. Calmon and F. Jenson, Best Practices for the Use of Simulation in POD Curves Estimation, IIW Collection, 2018.

Presentation of the case study Butt-weld with V-bevel

Conventional UT (4MHz)

Phased array UT (5MHz) Thickness

EXTEND

Cetim

Presentation of the approach

MAPOD Study (« Model Assisted POD ») - 5 steps

1) Definition and verification of the nominal configuration 2) Choice of influencing parameters and preliminary studies

3) Parametric studies

4) Sensitivity analysis

Two different studies: conventional UT and PAUT

- Presentation of the approach considering PAUT
- Comparison of PAUT results with conventional UT

5) POD curves calculation

Ż

EXTE

1) Definition and verification of the nominal configuration

Procedure

- Array probe: 5L64-A2, 64 elements
- ► Wedge: SA2-N55S
- Frequency: 5 MHz
- Electronic linear scanning (unfocused): angle of refraction 60°
- Calibration: Time Corrected Gain (TCG), SDH Φ = 3 mm
 - Depth 15 mm, 20 mm and 30 mm

EXTEND

2) Choice of influencing parameters and preliminary studies

Considered influencing parameters

- Part thickness
- Geometry Bevel angle
- Shear wave celerity (T)
- Defect height
- efect Defect length
- Defect depth
 - Central frequency of the array probe
- Wedge height
- Probe Wedge angle of incidence
 - Compression wave celerity in the wedge
- Testing Probe rotation around the z-axis
 - Initial position of the probe along the y-axis
- Probe increment resolution along the y-axis

20

EXTE

cetim

3) Parametric studies

Objective: first parameters selection

Con	sidered influencing parameters	Nominal value	Variation range [min ; max]
Geometry	Part thickness	15 mm	[13,5 mm ; 16,5 mm]
	Bevel angle	60°	[57° ; 63°]
	Shear wave Celerity (T)	3255 m/s	[3155 m/s ; 3355 m/s]
Defect	Defect height	2 mm	[0,6 mm ; 4 mm]
	Defect length	5 mm	[0,8 mm ; 30,8 mm]
	Defect depth	7 mm	[4,5 mm ; 9,5 mm]
Probe	Central frequency of the array probe	5 MHz	[4,5 MHz;5,5 MHz] ¹
	Wedge height	27,4 mm	[25,8 mm;27,4 mm]
	Wedge angle of incidence	36°	[35° ;37°]
	Compression wave celerity in the wedge	2330 m/s	[2280 m/s;2380 m/s]
Testing	Probe rotation around the z-axis	0°	[-10°;10°]
	Initial position of the probe along the y-axis	174,5 mm	[173,5 mm;175,5 mm]
	Probe increment resolution along the y-axis	2 mm	[0,5 mm;4 mm]

¹ Range from ISO 18563-2 (Chapter 8, Section 8.4.3): central frequency shall vary between ±10%.

3) Parametric studies - examples

Defect length (mm)

EXTEND

cetim

3) Parametric studies - examples

Defect depth (mm)

EXTEND

cetim

4) Sensitivity analysis

Objectives:

- Study the impact of parameters on signal amplitude
- Rank parameters from most to least influential for a given test scenario
- Parameters used for the final metamodel 3510 random draws.

EXTE

4) Sensitivity analysis – 3 test scenarios

Scenario 1: uniform distributions : assumes few knowledge nor control of uncertainties

Influential parameters used	Variation ranges	Distribution	Mean, standard deviation
Shear wave celerity (T)	[3155 m/s;3355 m/s]	Uniform	-
Defect height	[0,6 mm ; 4 mm]	Arithmetic list	-
Defect length	[0,8 mm ; 30,8 mm]	Uniform	
Probe rotation around the z-axis	[-10 [°] ;10 [°]]	Uniform	-
Initial position of the probe along the y-axis	[173,5 mm;175,5 mm]	Uniform	
Probe increment resolution along the y-axis	[0,5 mm;4 mm]	Uniform	

Scenario 2: "optimal" inspections

Scenario 3: "poor" inspections

Influential parameters used	Distribution	Mean, std. deviation	Distribution	Mean, std. deviation
Shear wave celerity	Normal	3255 ± 30 m/s	Normal	3255 \pm 30 m/s
Defect height Defect length	Arithmetic list Uniform	-	Arithmetic list Uniform	-
Probe rotation Probe initial position	Normal Uniform	$0^{\circ} \pm 3^{\circ}$	Normal Uniform	0° ± 7,5°
Probe increment resolution	Normal	0,5 \pm 1 mm	Normal	4 \pm 2,5 mm

EXTEND

Cetim

Conventional UT / PAUT comparison

Sensitivity analysis - Scenario 2 ("optimal" inspections)

Sobol indices

3 most influencing parameters:

Probe Skew has not the same effect for the 2 probes

Defect height, defect length and probe rotation around z-axis

EXTE

etim

Conventional UT / PAUT comparison

POD curves

- Conventional UT and PAUT results
 - ► a_{90/95} Defect height
 - ▶ "Hit/Miss" data

_			Scenario 2 "Optimal" inspections	Scenario 3 "Poor" inspections
-	v.UT	a _{90/95} -6 dB	1,40 mm	3,92 mm
	Con	a _{90/95} -12 dB	0,69 mm	1,79 mm
_	PAUT	a _{90/95} -6 dB	1,72 mm	-
		a _{90/95} -12 dB	0,87 mm	2,54 mm

Scenario 2 : "optimal" inspections

Scenario 3 : "poor" inspections

Influential parameters	Distribution	Mean, Std. Dev.	Distribution	Mean, Std. Dev.		
Shear wave Celerity	Normal	3255 ± 30 m/s	Normal	3255 ± 30 m/s		
Defect height Defect length	Arithmetic list Uniform	-	Arithmetic list Uniform	-		
Probe rotation Probe initial position Probe increment resolution	Normal Uniform Normal	0° ± 3° - 0.5 ± 1 mm	Normal Uniform Normal	0° ± 7,5° - 4 + 2.5 mm		

|||∢

Conventional UT / PAUT comparison

Discussion concerning probe rotation around the z-axis

- Higher influence of probe rotation around the z-axis for PAUT than for conventional UT
- New scenario 2*: std. dev. ±1°
- Different probes characteristics

	Conventional UT [MWB60-4 (GE)]	PAUT [5L64-A2 (Olympus)]
Central frequency	4 MHz	5 MHz
Aperture	8x9 mm²	9,5x10 mm² (16 active elements)

Scanning mechanical system

Scenario 2* seems more realistic for PAUT

Imaging

■ ◄

22

EXTE

Conventional probe intrinsically more « robust » but PA technique should lead to much less variability

Conclusion and outlook

Conclusion

- Two MAPOD studies (5 steps)
- For each study, the 3 most influential parameters are:
 - Defect height
 - Defect length
 - Probe rotation around the z-axis
- Different test scenarios evaluated
- Discussion of the results obtained

Outlook

- Better consideration of human factors
- Enrich this numerical approach with experimental data from NDT inspections

Cetim

Going for the future