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ABSTRACT. A model coupling viscoelastic and multiple-scattering losses is developed to predict 
ultrasonic attenuation in unidirectional fiber reinforced composite of high fiber volume fraction. 
Complex-valued stiffness constants accounting for viscoelasticity are inserted in classical multiple-
scattering theory. Waves of various polarities (SH, SV, L) relatively to the fiber direction are 
considered. SH waves only require a scalar treatment, whereas the others require a vector treatment 
accounting for mode-conversions. Comparisons of predicted attenuation coefficients with 
experimentally measured ones validate the model.  

 
 

INTRODUCTION 
 
Unidirectional fiber reinforced layers enter in many manufacturing processes of 

composite materials. The geometry of such a layer leads to anisotropic symmetry of elastic 
characteristics (transversely isotropic). This property may be most useful for certain parts. 
By combining unidirectional layers of various orientations, materials of more complicated 
symmetries can be produced. 

There is an increasing need for the development of ultrasonic nondestructive testing 
(UT) methods for inspecting parts made of composite materials following the increasing 
use of such materials in the industry (e.g., aircraft and aerospace industries). In order to 
design new UT methods or to demonstrate performances of existing ones, simulation tools 
are very helpful [1]. Since attenuation plays an important role in actual testing of 
composites, models on which these tools are based must take into account the various 
attenuation phenomena encountered.  

Among the unidirectional fiber reinforced composite materials, those made of carbon 
fibers in a resin matrix constitute a very common class. As far as UT is concerned, this 
class of material is quite challenging. At first, their anisotropic nature leads to complex 
wave behavior, as it is the case for unidirectional fiber reinforced composites in general. 
Moreover, for this class of composite materials, ultrasonic waves are highly attenuated: i) 
the resin matrix exhibits viscoelastic properties, ii) part of the energy is lost, scattered by 
fibers. Eventually, it seems obvious that both phenomena are intrinsically coupled. 
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In the literature, one can find many works on modeling viscoelastic losses (see for 
example Deschamps and Hosten [2]) as well as losses due to fiber scattering (see for 
example Varadan et al [3]). As far as fiber scattering is concerned, some works deal with 
theories for single fiber scattering, some others take into account multiple-scattering 
phenomena. Biwa [4] developed a model combining losses due to both independent 
scattering by fibers (single scattering theory) with viscoelastic effects where the two 
phenomena simply superimpose. To the authors’ knowledge, no work has been published 
where mutiple scattering and viscoelastic losses are simultaneously accounted for.  

Our attempt here is to develop such a theoretical point-of-view since intuitively, the 
two phenomena shall be coupled to a certain extent. Experimental evidence of its validity 
will be shown by comparing predictions with existing measurements [5]. 

The present paper is therefore organized as follows. In the first part, a theoretical 
model coupling viscoelastic losses with losses due to multiple-scattering by fibers is 
derived. The second part is dedicated to the discussion of theoretical results. In particular, 
we compare theoretical results obtained with this new model to existing theoretical results 
recently predicted in [4]. The third part of the paper is dedicated to an experimental 
validation of the present model for various wave polarizations relatively to the fiber 
direction and materials with various fiber volume fractions.  
 
THEORY  

 
One of our aims in deriving the present model was to describe a two-phase 

unidirectional fiber-reinforced layer as an anisotropic and attenuating material 
homogeneous at the wavelength scale for further simulations [6]. Considering the typical 
diameter of fibers (7 µm), the typical fiber volume fraction (65%) and the typical frequency 
range of ultrasonic testing of one composite of interest [6], the wavelength scale is such that 
viscosity, multiple-scattering and their possible coupling appear as a (homogeneous) global 
phenomenon. Under such an assumption, the effect on wave amplitude of the overall 
attenuation phenomena maybe written as a simple frequency-dependent filter as 
 [ ]dpωα 0exp − , (1) 
such a writing allowing quite simple computer implementation in a more general 
propagation model. In this expression, α0 and p are real and positive valued, ω denotes the 
angular frequency and d is the distance of propagation in the medium considered.  

Correlatively, one other aim was to predict the phase velocities for the various 
possible wave polarizations as functions of the frequency and to study their possible 
dispersion. The model considers ultrasonic waves of various polarities defined relatively to 
the fiber direction. To simplify, only the cases of waves propagating perpendicularly to the 
fibers will be considered. In what follows (see Fig. 1), SH (respectively SV) denotes shear 
waves with a polarization vector parallel (respectively perpendicular) to the fiber direction 
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FIGURE 1. Description of the three considered polarities, defined relatively to the fiber direction. 
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and L denotes compression waves polarized along the wave vector and propagating 
perpendicularly to the fiber direction. The matrix is considered as an isotropic medium and 
the fiber, as a transversely isotropic medium whose axis of symmetry is parallel to the fiber 
orientation. 

Therefore, for symmetry reasons, the SH case only requires a scalar treatment since 
no mode-conversion can occur, whereas the two others require a full vector treatment 
accounting for mode-conversion phenomena in the fiber scattering process.  

 
Viscoelastic Losses 

 
In the literature, the rheological approach is often used to model viscoelastic losses. 

Such an approach for a polymer matrix results in an attenuation filtering effect where the 
angular frequency [see Eq. (1)] is squared, under the classical low viscosity approximation 
[8]. However, there are many experimental evidences for the case of viscous material (e.g. 
epoxy resin) showing a linear behavior [9], rather. Correlatively, measurements show that 
over a frequency range typical of that used in UT, phase velocity undergoes negligible 
dispersion (i.e., is almost independent of the frequency).  

These experimental observations allow us (following Biwa et al [7]) to describe the 
viscoelastic matrix as an isotropic medium with complex-valued Lamé’s coefficients, of 
which both the real and the imaginary parts are frequency-independent.  

In the case of the epoxy resin considered in the following theoretical predictions 
compared to experimental measurements, the coefficients taken into account are given by 
λ = 4.45 - i (0.027) and µ = 1.58 - i (0.128) (GPa), as measured ultrasonically by Biwa [5]. 

 
Multiple-Scattering Theories 

 
The problem of multiple scattering of waves by a set of scatterers is a classical 

problem of theoretical physics. In the case of elastic wave scattering, solutions to this 
problem were derived in the early 1950’s. Some of the theories were developed in order to 
describe a two-phase material composed of fibers in a matrix as a homogeneous material. 
Among these theories, the quite recent one developed by Yang and Mal [10] known as the 
generalized self-consistent method relies on the description of the heterogeneous medium 
as being constituted of three cylindrical phases (scattering by fibers being considered). This 
three-phase description is combined with the classical multiple-scattering theory originally 
derived by Waterman and Truell [11] for spherical scatterers modified to account for the 
cylindrical symmetry. Similar modifications could be made to enable the approach to deal 
with other geometry of scatterer. 

Fundamentally, the idea of a three-phase modeling approach is to describe the 
homogeneous effective medium as three concentric cylinders as shown on Fig. 1. The 
center medium is nothing but the fiber itself. The intermediate one shares the same elastic 
properties as those of the matrix. The surrounding medium is an artificial synthetic medium 
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Fiber (2)

Matrix (1)

a
b

z

 
FIGURE 2. Description of the three phases in the scattering model. 
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that mathematically would represent the overall effective homogeneous medium to be 
determined. As far as boundary conditions are concerned, equations of continuity for 
stresses and displacements across the fiber-matrix interface write the same way as if there 
were only two phases. Radius a is that of the fiber. Radius b is a parameter that depends on 
the fiber volume fraction φ and is related to the average free path of scattered waves in the 
matrix. It depends on a and φ and equals φ/ab = . The density of the effective medium is 
a simple function of φ and of densities ρm and ρf of the matrix and the fiber. It is given by 
 ( )1 m fρ φ ρ φ ρ= − + . (2) 

The complex-valued wavenumber denoted by k is the solution of the problem in 
hands and will describe the wave behavior in the effective medium. Its real part is related to 
the frequency-dependent phase velocity and its imaginary part is the frequency-dependent 
attenuation coefficient. Wavenumber k writes 

 )(
)(

ωα
ω

ω i
V

k += . (3) 

In Eqs. (2-3), the notation o  means that the quantity is that of the effective medium. In 
what follows, it will be omitted and k  will be simply denoted by k. 

The scope of the present paper is not to recall the whole derivation of the model 
proposed by Yang and Mal [10]. Readers interested in this detailed description are referred 
to Ref. 10. Our aim here is to recall the main stages of this theory that will be used further 
and add a more detailed discussion about its numerical implementation. 

The case of SH waves that only requires a scalar treatment and that of L and SV 
waves that requires a vector one to deal with mode-conversion phenomena at interfaces are 
considered separately. In both cases, the derivation leads to the resolution of a system made 
up of equations of continuity for the stress and the particle displacement at the two 
interfaces (r=a and r=b as shown on Fig. 2). One (SH case) or two (L and SV case) 
supplementary equations are required to solve the problem of finding the complex-valued 
wavenumbers associated to these waves. These supplementary equations relate to the 
multiple-scattering phenomenon. They were derived by Yang and Mal, as mentioned 
above, from Waterman and Truell [11] theory of multiple-scattering. 

Let us consider here the simple SH case to describe how the supplementary equation 
given by Eq. (4) is solved in practice. Waterman and Truell give the relation 

 ( ) ( )2 22
0 0

2 2 2
1 1 1

2 0 2
1 s sin f in fk

k k k
π    

= − −     
     

, (4) 

where k1 is the SH wavenumber in the matrix, fs(θ) is related to the far-field amplitude of a 
wave scattered by a fiber and propagating in the θ-direction, n0 is the number of scatterers 
per unit area. Applied to the three-phase model, the far-field expression is now related to 
the effective medium so that k1 is substituted for k in Eq. (4). This leads to an implicit 
expression since the function fs(θ) depends on the unknown k. One gets  

 
2

2
0

2

2
0 )(2)0(211 



−



 −=

k
fin

k
fin ss π . (5) 

Due to its implicit nature, this equation is then solved by means of an iterative 
scheme. Numerically, the scheme is initiated by taking for k initial value that corresponds 
to a propagation into the matrix material, k1. The global system made up of the equations of 
continuity and Eq. (4) is then solved numerically. This gives a new value for k. Its accuracy 
is tested against the previous one, the iterations being stopped when Eq. (4) reaches the 
value of 1 with a relative error (convergence criterion) that must be defined. 

878



 5

TABLE 1. Stiffness constants (in GPa) used for a Carbon fiber along z axis (3). The plane xy is isotropic. 
 

c11 c33 c44 c12 c13 
19.82 234.74 24.0 9.78 6.36 

 
Coupling Viscoelastic Losses and Multiple-Scattering 

 
The theory proposed by Yang and Mal leads to a complex-valued wavenumber that 

describes both the phase velocity and the attenuation in the effective medium for the 
various polarities considered. In their results concerning Carbon-epoxy composite, both the 
matrix and the fiber materials were assumed to be purely elastic, that is to say, material 
properties were described by real-valued stiffness coefficients. The theory has not been 
applied directly in the case where the two materials (either one or both) are viscous, as it is 
the case for example in Carbon-epoxy composites.  

To deal with viscoelastic components, we introduced in Yang and Mal theory 
complex-valued wavenumbers in both the matrix and the fiber appearing in the various 
computation stages of the unknown effective wavenumber. 

The incident and scattered waves, wherever they propagate (matrix, fiber, effective 
medium), are thus described as waves subjected to attenuation. Attenuation symmetry in 
the various media is assumed to be identical to that of the elastic behavior. Therefore, all 
the stages of the computation of the original theory can be readily transformed by taking 
into account the complex-valued wavenumbers. By doing so, viscous losses are implicitly 
accounted for in the scattering process and both phenomena are coupled. 
 
THEORETICAL RESULTS 

 
Various results predicted with the proposed model are now given to illustrate its 

capabilities. In these results, composite materials made of Carbon fibers in an epoxy matrix 
with various fiber volume fractions are considered. Indeed, in the last part of the paper 
predicted attenuation coefficients will be compared with measured ones for such materials. 
Complex-valued Lamé’s coefficients for the epoxy resin have already been given above. 
Resin density equals 1.23. That of a Carbon fiber equals 1.67. The stiffness constants used 
for the Carbon fibers are given as real-valued (elastic) constants given in Table 1. 

The first results (Table 2) concern the stiffness constants one can deduce from the 
model since this model homogenizes the composite by transforming it into a homogeneous 
anisotropic attenuating medium. These results (computed for φ =65%) are deduced from the 
real part of k [Eq. (3)] at low frequency (k being frequency dependent). They are compared 
with others obtained by a classical static homogenization approach. Since only three cases 
of wave propagation (L, SV, SH) are computed, three constants can be deduced.  

The full result concerning the variations of the real part of k with the frequency is 
shown on Fig. 3 for the same 65% case. Over a frequency range of [1 ; 10] MHz typical of 
frequencies used in UT, phase velocity (here for L waves) varies less than 0.02%. One can 
therefore conclude that in this case, phase velocity dispersion is negligible. 

The next results show the variations of attenuation coefficient as a function of the 
frequency for various fiber volume fractions and as a function of the fiber volume fraction 

 
TABLE 2. Stiffness constants (in GPa) for a Carbon-epoxy composite of 65% fiber volume fraction. Top: 
present model. Middle: classical approach. Bottom: relative error (%). 
 

 c11 c44 c66 
Present model (GPa) 13.28 5.79 3.18 

Classical approach (GPa) 13.22 5.77 3.12 
Relative error (%) 0.5 0.3 1.8 
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FIGURE 3. Variations of phase velocity with frequency for L waves propagating perpendicularly to fiber 
direction in an unidirectional layer with 65% fiber volume fraction. 
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FIGURE 4. Variations of attenuation coefficient for L waves in a Carbon-epoxy composite. Left: vs. 
frequency for various fiber volume fractions. Right: vs. fiber volume fraction for various frequencies. 

 

for various frequencies. Whatever the fiber volume fraction, attenuation increases linearly 
with frequency. Note that the model does not assume any specific law of attenuation 
(except a linear behavior for the pure epoxy). However, such a behavior (polynomial 
dependency of attenuation on frequency, of first degree in the present case) allows to model 
the attenuation of the Carbon-epoxy composite in the form given by Eq. (1). 

This result is well-known by experimentalists though quite troublesome. 
Unfortunately, the model cannot help in interpreting this result further, since the physical 
meaning of computed quantities is a bit hidden by the iterative character of the algorithm.  

Another interesting result shown here is that, for a given frequency, attenuation 
decreases as the fiber volume fraction increases. Viscoelastic losses due to the matrix lead 
to higher attenuation than multiple-scattering effects. Note that the same behavior is 
observed whatever the wave type (see last part of the paper for SH or SV waves). 

In Fig. 5, attenuation coefficients predicted by the present model and by the model 
described in [4] as a function of the frequency are compared for Carbon-epoxy composites 
of two different fiber contents. At low (10%) fiber concentration, results from both models 
superimpose. At high (65%) concentration, the two models predict a lower attenuation but 
results are notably different (a difference of 0.7dB/mm at 5 MHz). Independent scattering 
approximation overestimates the attenuation which may appear as counterintuitive at first 
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glance. Under this latter approximation, part of the energy is definitely lost when back-
scattered. If multiple-scattering is taken into account, some of this energy can be scattered 
again by other fibers and eventually propagate along the forward direction. 
 
EXPERIMENTAL VALIDATION 
 

Experimental measurements reported in Ref. [5] were compared to theoretical 
predictions. Measurements for the three possible polarities were made using wideband 
pulses, then processed at different frequencies. Various plates with various fiber volume 
fraction were manufactured. The manufacturing process is rather difficult and it was not 
possible to obtain a set of plates covering a large range of fiber volume fraction. The 
extreme case easily obtained was that of a plate made of pure resin (0% fiber volume 
fraction). Other plates were for fiber volume fractions varying in the range of [49 ; 61] %. 

To illustrate the validation study, four plots comparing predicted and measured 
attenuation coefficients are shown on Fig. 6. The three polarities are considered (SH, SV, 
L), and for L waves, results at two different frequencies are shown.  

Whatever the case, predicted attenuation coefficients are in excellent agreement with 
measured ones. These comparisons undoubtedly show the pertinence of the proposed 
model, at least in the case of Carbon-epoxy composite. For this composite, waves (incident 
and scattered) are attenuated by both viscoelastic losses in the matrix and multiple-
scattering by fibers and therefore by their coupling. 

Despite the lowest frequency (2 MHz) used in the SH case, the attenuation coefficient 
is the highest measured. In the cases dealing with L waves, one sees that the higher the 
frequency used in the measurement, the higher the attenuation. At the same frequency of 3 
MHz, attenuation of SV waves is about three times higher than that of L waves. 
 
CONCLUSION 

 
A theoretical model has been developed to predict wave propagation and attenuation 
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in unidirectional fiber reinforced composites. It couples effects due to multiple-scattering 
(as modeled by Yang and Mal theory) with viscoelastic losses by introducing complex-
valued stiffness constants to describe the matrix (and possibly the fiber). The model is 
limited to the case of waves of arbitrary polarization propagating perpendicularly to the 
fiber direction. However, this corresponds to many cases of practical application in NDT. 

At low fiber volume fraction, it was shown that predicted attenuation coefficients can 
be actually predicted without account of multiple scattering processes. At typical fiber 
volume fractions as those currently used for Carbon-epoxy composites (e.g. 65%), 
multiple-scattering plays an important role and must be accounted for. 

In the case of Carbon-epoxy composites and whatever the fiber volume fraction, 
theoretical predictions show a linear frequency dependency of the exponential filter 
describing the attenuation law. Correlatively, phase velocity dispersion appears to be 
negligible. 

Experimental measurements on Carbon-epoxy plates with various fiber volume 
fractions, at various frequencies and for various wave polarization relatively to the fiber 
direction were conducted. Excellent agreements of predicted attenuation coefficients with 
those measured validate the proposed model. 
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