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ABSTRACT. Optimizing guided wave (GW) examinations or interpreting GW measurements can be 
greatly helped by simulation tools dealing with complex propagation and scattering phenomena. Tools 
are developed exploiting the modal nature of GW, this simplifying interpretation (no postprocessing 
as required when results are computed without reference to modes). Two modal formulations simulate 
measurements (pitch-catch, pulse-echo); they link a semi-analytic finite element code for computing 
modes, models for transducer diffraction and a specific finite element model for scattering by 
arbitrary discontinuities. The paper reviews these tools; examples illustrate their interest. 
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INTRODUCTION 
 
 Elastic guided waves (GW) propagate at long range in the thickness of parts of 
regular shape which thickness is of the same order of magnitude as wavelengths. This 
property is very attractive for the nondestructive evaluation (NDE) of large structures since 
it limits or even avoids transducer scanning; this reduces the overall duration and cost of 
the examination and makes its implementation easier [1,2]; GW are also measured in NDE 
by Acoustic Emission (AE) of pressure vessels and can be passively and actively used in 
Structural Health Monitoring (SHM). Other intrinsic properties of the physical behavior of 
GW tend to lessen their interest. i) most GW are dispersive – their speed is frequency 
dependent, ii) they are multi-modal – at a given frequency, several modes coexist, their 
number growing with frequency; iii) modes couple when interacting with a discontinuity 
of the guide; iv) since their wavelength compares with structure thickness, spatial 
resolution is limited. All these characteristics make difficult the interpretation of results as 
well as the design of optimal testing configurations. Simulation tools can constitute the 
appropriate mean to overcome these difficulties and are expected by industrial conceivers 
of GW inspections. It is our objective to address these industrial needs.  

In this paper, we first review our modeling approach adopted for simulating NDE 
methods involving GW propagation and the tools used or developed at CEA to implement 
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it; mathematical demonstrations are not given but due references are proposed to interested 
readers. Then, the advantages of the simulation approach are illustrated by examples of 
NDE examinations involving GW propagation. Works in progress or future are mentioned. 
 
THEORY 
 
Modeling Approach 
 
 Since most guided waves are dispersive, GW testing is operated in general in a 
limited frequency bandwidth; excitation signals are typically in the form of a single 
frequency (CW) signal modulated in amplitude (Gaussian wave packets, tone bursts etc.). 
It is therefore natural to model GW in the frequency domain, typical waveforms measured 
being synthesized by Fourier transform over a limited spectrum. In what follows, models 
are described under CW assumption; ω denotes the angular frequency. 
 A first key property of GW propagation is that at a given frequency, GW can be 
decomposed as (complex-valued) linear combination of eigenmodes peculiar to the section 
of the structure (perpendicular to its guiding axis denoted by z) and to its stiffness. The 
knowledge of the set of modes and their behavior is sufficient to depict the wave behavior 
of any elastodynamic quantity (particle displacement or velocity, stress) relative to an 
arbitrary field. The nth mode of this set is described at a given frequency by: i) its 
wavenumber βn, real for the finite number of propagative modes, imaginary for the finite 
number of evanescent modes or includes an imaginary part for the infinite number of 
inhomogeneous modes, ii) the corresponding particle displacement vector in the invariant 
section of the guide ( , )x ynu% . The CW displacement u associated to a wavefield writes 
 

 ( )( , , ; ( )) ( , ) nj z t
n

n
x y z t A x y e β ωω −=∑ nu u% , (1)  

 

where An denotes the nth amplitude coefficient in the decomposition. In practice, the 
knowledge of mode behavior and dispersion characteristics is an essential step for 
understanding complex phenomena arising in a guiding structure. Measured or simulated 
signals are then interpreted in reference to modes: typical questions concern the ability of 
the modes to be transmitted through or reflected on a guide discontinuity, to be converted 
into other modes in the interaction etc. If simulated results are computed regardless of the 
modal nature of GW, they are very often post-processed at a considerable computation 
cost to be eventually interpreted as variations of mode amplitudes. Therefore, we made the 
choice to develop simulation tools fundamentally on the basis of the modal description of 
waves in each portion of the structure that propagates GW.  
 A second key property of GW propagation – as applied to NDT, is that it can be 
described as a global phenomenon in the homogeneous portions of the structure but the 
way GW interact is otherwise dominated by local phenomena (e.g., transducer diffraction 
both in radiation and in reception, scattering by a defect, by a variation of geometrical or 
material properties of the structure and by any inhomogeneity of the structure). GW are 
especially attractive for their ability to propagate over large distances; NDT is operated by 
transducer(s) and aims primarily at detecting defects which are localized. Thus, the 
GW/NDT simulation tools must deal with various scales corresponding to various 
phenomena. Moreover, industrial needs for simulation suppose that tools can be used 
intensively. A single method cannot be effective for both local and global computations. 
We believe that various phenomena at different scales require various models. A further 
ingredient is necessary to give these models the possibility to work all together at the same 
time and in synergy. Next paragraph recalls the overall formulations [3] that constitute this 
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FIGURE 1. 1) Configuration where a single transducer is used in the transmit-receive mode. 2) Configuration 
where two separated transducers (one emitter, one receiver) are positioned on two different waveguides. 
 

central ingredient, followed by the description of models used or developed for computing 
modes, transducer diffraction effect on them and their scattering by inhomogeneities. 
 
Overall Modal Formulations [3] 
 
 Two configurations (denoted by 1) and 2), see Fig. 1) are considered for which two 
formulations were derived. The first (resp. second) is a pulse-echo (resp. pitch-catch) 
configuration. The two frequency-dependent expressions (Eqs. 2) of the signal received 
si(ω), i=1, 2, were obtained using some mathematical properties of guided modes (bi-
orthogonality) and the electro-mechanical theorem of reciprocity proposed by Auld [4].  
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where P is the electrical power provided to the emitter. e
mA  and r

nA  are respectively the 
amplitude of mode m radiated by the transducer and the amplitude of sensitivity to mode n 
of the transducer in reception; they stand for transducer diffraction effects. Rnm (resp. Tnm) 
is the reflection (resp. transmission) coefficient for the incident mth mode and the reflected 
(resp. transmitted) nth mode; they stand for the scattering by an inhomogeneity of the 
guide(s). z - denotes the distance between the emitter and the scattering zone; L – z+ 
denotes the distance between the scattering zone and the receiver in configuration 2; these 
distances appear together with βn, the wave number of the nth mode of a given guide, in 
exponential terms which are propagators of GW in the various guides involved. In 
practice, as soon as transducers are sufficiently distant from the scattering zone, the two 
discrete sums in equation (2) can be restricted to the sole propagative modes.  
 In these formulas, the various local phenomena (causing variation of mode 
amplitude) and the global propagation in homogeneous guides are mathematically 
separated. These formulas can admit different methods for computing the various terms of 
the double discrete sums. Another crucial point about them is that they make it possible to 
combine existing results for some of the terms with new results for other terms, opening 
onto vast post-processing capabilities. It is possible to use a scattering matrix with several 
amplitudes relative to different transducers without re-computing the whole simulation; 
this constitutes an economical way of optimizing testing configurations. Examples of such 
capabilities will be given.  
 
Mode Computation by the Semi-Analytic Finite Element Method 
 
 There are many methods in the literature for computing modal solutions; some are  
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more appropriate than others for a given application. Our aim being to offer generic tools, 
the semi-analytical finite element method (SAFE method, see [5] for example) appeared to 
be very well suited to our needs. It is very well documented (notably in this series) and is 
still under developments for adding new capabilities. In few words, this method involves a 
finite element computation in the guide section, allowing the computation of both wave 
vectors and modal displacements in the section as being the eigenvalues and eigenvectors 
(resp.) of a quadratic system of equations; this system is the discrete form of a variational 
problem in the guide section. Since this is a finite element computation, it allows one to 
deal with all sorts of characteristics of the guides (section shape, constitutive materials). As 
it is restricted to the section, it is computationally very efficient. The propagation is 
otherwise accounted for by means of analytic propagators in the guiding direction normal 
to the section considered, at no computational cost (same function whatever the range). In 
Eqs. (2), this model gives the solution for the exponential propagator terms. 
 
Local Models of Transducer Diffraction 
 
 There are basically two cases to distinguish: the transducer(s) is positioned, i) on 
the guiding surface; ii) on the guide section. Each case requires a specific model for 
computing the amplitude of the modes. Then, it is necessary to derive models adapted to 
the transduction that takes place, this depending on the type of transducer used 
(piezoelectric, EMAT, magnetostrictive). Again, this problem is addressed in the literature 
for various cases of industrial interest. In the present implementation, our models deal with 
piezo-transducers assumed to be sources of normal stresses all over their active surface. 
For transducers acting from the section, a specific variational formulation has been derived 
which is discretized on the elements used for computing modes by SAFE [6]. The case of 
nonuniformly excited transducers – the applied stress is made variable along the active 
surface – has been treated allowing us to propose two methods for selecting one single 
mode chosen among possibly many modes [7]. For those acting from the guiding surface, 
a surface integration over the transducer area must be computed. In the case of an angled 
probe, which is a very common way of selecting a mode at a given working frequency by 
phase coincidence, it can even be computed analytically [8]. In all cases, the results are 
expected to be given in the form of a linear combination of modes, as in both references 
cited here [6, 8]. In Eqs. (2), these models give the solution for the terms e

mA  and r
nA . 

 
Local Models of Scattering by Defects and by Guide Discontinuities 
 
 Computing the scattering by a guide inhomogeneity is a difficult task. Contrary to 
bulk waves typically used in NDT, guided waves have in essence a wavelength 
comparable with the dimensions of the guide section and the size of the inhomogeneity. In 
the former case, scattering can be accurately computed by means of approximations (high 
frequency); in the latter, deriving suitable approximations is almost impossible.  

Our aim is to write the solution of the scattering problem in the form of a matrix of 
complex coefficients – the reflection Rnm and transmission Tnm coefficients in Eqs. (2), 
assuming that modal solutions in all the guiding structures connected to the local zone of 
scattering are known. This matrix links an input vector constituted by the coefficients of 
decomposition of the incoming wave in its guiding structure, to output vectors constituted 
by the coefficients of decomposition of the outgoing waves in their guiding structure.  

An efficient method was proposed [3] for planar crack-like defects of arbitrary 
shape in an otherwise homogeneous guide, assuming that the crack surface belongs to the 
guide cross-section. By taking advantage of the symmetry, a variational formulation was 
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FIGURE 2. Left: scattering by the junction of several guides. Right: the solution involves SAFE 
computations in the connected guides and a FE computation including transparent boundaries in the junction. 
 
derived discretized on the elements of the SAFE calculation.  
 To deal with arbitrary flaw shapes or guide inhomogeneities (section or material 
variations, junction as shown in Fig. 2, etc.), an original finite element (FE) scheme has 
been developed with the further goal to limit the computation zone to a minimal size for 
efficiency (full demonstration in [9], extended review in [10]). The computation zone 
being necessarily of finite size, its boundaries with all the guiding structures connected to 
it must be transparent for elastic waves: they must not reflect the incoming waves nor 
reflect outgoing waves. Thus, the main task in this development was the obtaining of 
artificial boundary conditions endowing transparency. Radiation condition at infinity is 
brought back to the artificial boundaries by building an operator coupling the finite 
elements inside the zone to the modal solutions in guides. The operator combines the 
displacement components with axial stresses (axes of the various guides) – Dirichlet-to-
Neuman type. By doing so, an original mixed variational formulation was derived 
combining the displacement and a multiplyer associated to the axial stresses. The scattered 
field is projected on modal solutions in guides through the use of bi-orthogonality relations 
expressed for all guides, this being done while solving the FE system. As the new system 
partly relies on classical FE discretization of elastodynamics, it is straightforward to 
introduce internal sources inside the FE zone; an example of application for simulating an 
examination by the Acoustic Emission method will be given for illustrating this possibility. 
 
EXAMPLES OF APPLICATION TO NDT 
 
 Two applications to NDT are treated here to illustrate possible uses of the tools 
described. In the first, the scattering by a junction of three identical guides is considered; 
post-processing capabilities are used to study the effects of mode selection on measured 
waveforms. In the second, internal forces are introduced that model a source of AE at the 
tip of a crack; the field radiated is decomposed into modes propagating in the structure. 
 
Reflection from and Transmission through a Complex Junction 
 
 The junction considered (Fig. 3) is that of three plates (40-mm-thick) in steel. The 
radiation is operated from plate #1 and reflection and transmission from and through the 
junction in plates (#1-3) are studied. The scattering matrix is computed over the bandwidth 
[49.5–63.5] kHz. Figure 4 shows the total field inside the junction for an incident S0 mode 
at three frequencies (lowest, center, highest). The FE computation results in three 
scattering matrices (reflection, transmission) for the various possible incident modes (three 
propagative modes in the frequency range) scattered as propagative modes in the guides.  
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FIGURE 3. Left: The junction considered in the computation. Angled-probes are used as T and R on the 
various guides, allowing several configurations to be processed.  Right: elements of the computation. 
 
Each matrix is a 3x3 (for 3 propagative modes) of frequency dependent coefficients. 
Figure 5 shows such a result for S0 incident mode. Equivalent results were obtained for 
other incident modes but the lack of space prevents us to show them here. It may be 
noticed that the sum of squared coefficients equals 1 (conservation of energy). Results for 
the scattering matrices are now processed by means of the overall formulas [Eqs. (2)], for 
various transducers. We consider angled- probes, one in T/R mode on plate #1 and two 
receivers on plates #2-3, 2 meters away from the junction. Shoe angles are taken so that 
phase coincidence occurs between a bulk CW in the shoe and a chosen mode at the center 
frequency (56.5 kHz): 70.6°, 25.2°, 19.5° for A0, S0 and A1. The active length equals 50 
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FIGURE 4. Total displacement inside the junction at different frequencies for S0 incident mode. 
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FIGURE 5. For S0 incident in plate #1, scattering coefficients in plates #1-3 as functions of frequency 
(kHz). Left: reflection in plate #1 – Center: transmission in plate # 2 – Right: transmission in plate #3. 
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FIGURE 6. Waveforms received in plates #1 (L), #2 (M), #3 (R), for the 3 wedges. Time-scale [1.5-3.0] ms. 
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FIGURE 7. Reflected signal with A1 probe made of 9 elementary signals (3 equal to 3 others by symmetry). 
 
mm. The excitation pulse is Gaussian (10% bandwidth at -6dB). Waveforms simulated are 
shown on Fig. 6. Transmitted ones (middle, right columns) of higher amplitude than 
reflected ones (left) are displayed with a 14 dB scaling factor. In Eqs. (2), each term of the 
double sum can be seen as a signal itself. Therefore, one can easily interpret signals by 
decomposing them into elementary signals as shown by Fig. 7. 
 
Acoustic Emission by a Crack 
 

The hybrid model is used for decomposing the field radiated by a AE source on 
modes over the narrow bandwidth of a AE probe. AE sources are generally transient. 
However, due to the low amplitudes radiated, transducers used as receiver of possible AE 
events are commonly resonant transducers (high sensitivity but very limited bandwidth). 
The configuration considered (Fig. 8, top) is that of a 20-mm-thick steel plate subjected to 
external load, including a 45°-tilted surface-breaking crack. The crack tip is assumed to be 
source of a transient force aligned with the crack surface. The modal decomposition of the 
field radiated by the AE source is computed at the artificial boundaries of the FE zone. 
Decompositions at left and right of the source, given in Fig. 8 as functions of frequency 
over the receiver bandwidth ([0.16 – 0.23] MHz) differ: emitted waves interact with crack 
and plate surfaces differently before they propagate in both parts of the plate.  

 
SUMMARY AND PERSPECTIVES 
 

A modeling approach for GW / NDT simulation has been described; wavefields in  
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FIGURE 9. Top: AE configuration considered. Bottom: modal decompositions of the AE source at artificial 
left and right boundaries of the FE zone as functions of the frequency (in MHz). Mode amplitudes are 
arbitrary scaled but their relative values are quantitatively comparable. 
 
guides are decomposed on modes and formulas link local and non-local models of 
phenomena typical of GW measurements. The SAFE method is used for computing long 
range propagation in uniform guides. GW scattering can be computed in some simple 
cases (crack normal to the propagation axis) by a scheme derived from SAFE, similarly to 
transducer diffraction effects. A specific FE method has been derived for computing the 
scattering by arbitrary inhomogeneities; it includes exact transparent artificial boundaries 
for reducing the size of the FE zone, thus the computation costs. Overall modal formulas 
offer many post-processing capabilities that help data interpretation as illustrated by some 
examples. Some of these tools will be implemented in future versions of CIVA software 
platform [11]. Experimental validation in complex cases, applications to non-destructive 
testing methods such as SHM or AE are in progress. 
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