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ABSTRACT 

This paper aims at describing the theoretical fundamentals of a reciprocity-based ultrasonic measurement model. This 
complete inspection simulation can be decomposed in two modeling steps, one dedicated to transducer radiation and 
one to flaw scattering and echo synthesis. The physical meaning of the input/output signals used in these two modeling 
tools is defined and the theoretical principles of both field calculation and echo computation models are then detailed. 
The influence on the modeling results of some changes in the simulated configuration (as the incident angle) or some 
input signal parameters (like the frequency) are studied: it is thus theoretically established that the simulated results can 
be compared between each other in terms of amplitude for numerous applications when changing some inspection pa-
rameters in the simulation but that a calibration for echo calculation is generally required. 
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1. Introduction 

Ultrasonic techniques are widely used in non-destructive 
evaluation (NDE) in the aim of characterizing defects in 
terms of their location, size, type, orientation, etc. It is of 
great interest to ensure the ability of the methods used to 
detect and characterize dangerous flaws. Modeling ap- 
pears to be an efficient technique to improve methods of 
inspection and data analysis. The modeling of a com- 
plete ultrasonic flaw measurement requires the under- 
standing of several different physical processes as well as 
the connection between them. These processes are nota- 
bly the description of realistic transducers (the electro- 
mechanical transduction), the radiation of waves by these 
probes, their propagation through complex components, 
their scattering by arbitrary flaws, the propagation and 
reception of the scattered waves.  

The reciprocity-based relation, whose use in nonde-
structive testing began with the papers by Kino [1] and 
Auld [2], provided a general way to make the connection 
between the different processes involved in an ultrasonic 
measurement. The measurement modeling approach of 
Thompson and Gray [3], which is based on Auld’s gen-
eral relation, allowed the approximate prediction of ul-

trasonic scattering measurements made through liquid- 
solid interfaces for relatively small flaws. Schmerr [4] 
proposed then more complete measurement models 
which can be used for large flaws.  

In parallel, for several years, with the aim of modeling 
non-destructive evaluation, CEA-LIST and partners have 
been developing ultrasonic simulation tools which are 
gathered in the expertise software platform named CIVA 
[5]. Such tools have been continuously extended through 
the development of simulation models, from the early 
nineties, to account for realistic testing configurations in 
terms of probes (monolithic, phased arrays…), flaws and 
arbitrary component shapes (canonical shapes, paramet-
rically defined or 2D/3D Computer Aided Design i.e. 
CAD defined). The existing ultrasonic modules allow to 
simulate fully real ultrasonic inspection scenarios in a 
range of applications, which requires the computation of 
the propagated beam, as well as its interaction with flaws. 
The beam propagation model is based upon a semi-ana- 
lytical method which calculates the impulse response of 
the probe inside the component, assuming individual 
source points distributed over the radiating surface of the 
probe. Each elementary source point contribution of the 
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probe toward the computation point is therefore evalu-
ated using a so-called pencil method applied to elastody-
namics [6]. This model allows to compute the ultrasonic 
field in the component for wedge coupled or immersed 
probes of arbitrary shapes, for monolithic or phased-ar- 
ray transducers. Firstly, developed for homogeneous and 
isotropic materials, it has been extended to deal with 
anisotropic and heterogeneous cases [7]. In order to 
model the scattering of ultrasound by flaws, the choice 
has been made to adopt mainly analytical approximate or 
exact methods so as to fulfill requirements of an inten-
sive use. Most of the applied analytical theories (Kirchh- 
off [8] and Born approximations [9], Geometrical Theory 
of Diffraction (GTD) [10], Physical Theory of Diffraction 
(PTD) [11] Separation of Variables (SOV) [12,13]) were 
already described in a previous reference [14]. The con-
nection between the radiation and scattering modelings is 
done assuming several hypotheses and using reciprocity 
considerations, and provides the prediction of flaw re-
sponses. The developed flaw response model presents 
similarities with that described by Schmerr in [4] but also 
some important differences. The connection between the 
field and the scattering modeling is carried out here by 
using a simple field reciprocity principle (detailed in 
Appendix): the sensitivity of the receiver to a spherical 
wave scattered from a flaw point M is proportional to the 
field radiated by the receiver towards the point M. By 
contrast, Schmerr’s formulation is directly derived from 
Auld’s reciprocity relation-ship [2] which uses two states, 
the first one being the current flaw inspection configura-
tion and the second being the same configuration but 
where the flaw is absent and the previous receiver is now 
the emitter: as these two states differ by the presence of 
the flaw, the flaw scattering modeling is directly included 
in Schmerr’s reciprocity relation contrary to the field 
reciprocity principle used in this paper. In addition, the 
choice of the simulation input signal proposed here is 
very practical: it is simply the experimental specular 
echo from a reference block (front surface) or from a 
common large plane calibration reflector (as a Flat Bot-
tom Hole-FBH) located in far field (or in the focal area in 
case of a focused probe). Contrary to Schmerr’s proce-
dure [4], there is no need to perform a spectral deconvo-
lution to obtain the input signal (called by him “system 
function”).  

In this paper (Section 3), the abilities of the proposed 
models (for both beam propagation and complete flaws 
response) are clearly established since it is of great inter- 
est notably for NDE industrial applications: the aim of 
simulation is to help NDE engineers to conceive or opti- 
mize the inspection of a specimen including potential 
flaws by determining the more adequate inspection pa- 
rameters (incidence angle, wave mode, probe character- 

istics, frequency…).   
This paper is devoted to the main features description 

of the proposed measurement model. Sections 2 briefly 
summarizes the theoretical principles and assumptions 
used to obtain the formulations for both radiation and 
flaw response models and the input/output signals of 
these two modeling tools are clearly defined. The influ- 
ence of some configurations parameters on the amplitude 
of simulated results is then studied in Section 3.  

2. Physical Definition of Modeling 
Inputs/Outputs and Basic Principles of the 
Propagation and Interaction Models 

2.1. Field Computation 

2.1.1. Description of the Modeling Process 
The input signal, as input of the field computation mod- 
ule, corresponds to the time variation  0v t  of the 
acoustic particle velocity of the piezoelectric ceramic. 
The acoustic particle velocity is the component of the 
vibration velocity normal to the crystal surface.  

The output of the field calculation is the displacement 
at each computation point. Other quantities as the scalar 
potential for P waves in an elastic solid can be deduced 
from this displacement. 

When computing a field, the model used (pencil me- 
thod) expresses the absolute amplitude of the simulated 
field in terms of this particle velocity . Conse- 
quently, the model simulates all the propagation phe- 
nomena from the outer transducer surface to the field 
calculation point. The physical phenomena occurring 
from the coaxial cable to the outer transducer surface (the 
electro-acoustic transduction) are not taken into account. 
Moreover, this model is based on a piston-like vibration 
approximation for the transducer: the particle velocity is 
supposed to be uniform on the piezoelectric surface. This 
is an assumption frequently used for transducers model- 
ling. The model process can be represented by a field 
transfer function 

 0v t

 ,fieldf M t  (field impulse response) 
defined as follows: 

    0, ,field  M t f M t v t   ,       (1) 

where  ,M t  represents the simulated field (by the 
way of a scalar quantity) at a computation point M and t 
is the time of propagation. 

2.1.2. Simplified Expression of Radiated Fields 
A model has been developed at CEA to predict the ultra- 
sonic field radiated by a transducer (either contact or 
immersion, monolithic or phased-array) for homogene- 
ous or heterogeneous components made of isotropic or 
anisotropic materials. This theoretical model is based on 
a pencil method which has been described in great details 
in [2] and whose principles, based on Fermat’s principle 
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and energy conservation, are similar to those used in 
standard geometrical ray theory [15]. In this paper, we 
will only derive the expressions of the field impulse re- 
sponse  ,fieldf M t  in two simple configurations by 
using another method based on the Rayleigh-Sommerfeld 
integral for the probe radiation modeling and applying 
the stationary phase method: these configurations are 
respectively a fluid medium and an elastic isotropic me- 
dium after refraction at a fluid/solid interface. In such 
configurations, it has been shown in [16] that the pencil 
method and the Rayleigh-Sommerfeld integral method 
are equivalent. The pencil method has been chosen for 
the beam computation module since it can be easily ex- 
tended to complex components. Nevertheless, the Ray- 
leigh-Sommerfeld integral method presents the advan- 
tage to show easily the physics of transducer radiation 
phenomena in the simple cases. 
a) Field in a fluid medium 

For simplification issues, we are interested here in the 
field radiated by a transducer in a single propagation iso-
tropic medium. 

Scalar diffraction theory allows to express the acoustic 
field in a single fluid propagation medium by the Ray- 
leigh-Sommerfeld integral [17]:  

   0 0, d
2crystal

v t r c
M t s

r


  

  ,  (2) 

where  , M t  is the velocity potential at point M and 
at a time t and where  and 0c  are respectively the 
distance between a source point S on the surface trans- 
ducer and the observation point M and the wave speed in 
the propagation medium. The Rayleigh-Sommerfeld in- 
tegral expresses physically the beam radiated by a trans- 
ducer as the superposition of hemispherical waves gener- 
ated by source points located on the transducer surface. 

r

The previous formula differs from those given by Ste- 
panishen (see Equation (7) in [17]) by the sign minus 
since we adopt in this document a different definition for 
the scalar velocity potential for P waves than this author: 
contrary to Stepanishen (see Equation (2) in [17]), we 
adopt a more usual definition:  

   ,v M t M t 


,





.    (3) 

It is possible to define the emitter field impulse re- 
sponse  as the velocity potential produced at 
point M by the transducer subjected to a particle speed 

. The radiated field can be modelled by an impulse 
response filter , since the emitted potential has 
the form: 

 ,eh M t

e

 t
 ,h M t

       0 0
0, d

2 e
crystal

v t r c
* ,M t s v t

r


   

 h M t , (4) 

where 

   0, d
2e

crystal

t r c
h M t s

r

 
 

 .    (5) 

b) Field in an isotropic medium after a refraction at the 
coupling/specimen interface 

A homogeneous specimen composed of an isotropic 
medium is then considered. 

The previous Expression (4) of the Rayleigh-Som- 
merfeld integral established in the acoustic case can be 
extended to the refracted field radiated by a probe inside 
a specimen made of an isotropic material. This extension 
can be demonstrated as follows (see [16] for more 
mathematical details). First, in the Rayleigh-Sommerfeld 
integral, Weyl’s decomposition of a spherical wave in 
terms of an angular spectrum integral representing a su- 
perposition of plane waves is applied. The previous inte- 
gral has the form of a spatial Fourier transform. Using 
the stationary phase method, this integral is evaluated by 
calculating only the contribution of the stationary phase 
point which corresponds to a particular direction of the 
wave vector, that of the transmitted geometrical path, 
respecting Fermat’s principle. The longitudinal elastic 
field can be expressed as follows:   

         0,
0, d

2
P

tP i ee
crystal P

v t T
,M t C s v t h M

R
  


 

 t

   (6) 
where 

     ,, d
2

P
e tP i e

crystal P

t T
h M t C s

R


  


 ,    (7) 

where we note ,f gC  with  the 
coefficient for reflection (r index) or refraction (t index) 
for plane waves in harmonic regime related to scalar 
quantities (f) and (g) (describing the f incident wave and 
the g refracted wave). For simplification, only this coef-
ficient value at the most representative incident angle i

 , , ,rP rSV tP tSV 

  
ill be considered. And, for a mode   eRw  ,P S ,   is 

the emission divergence factor and T is the time of 
flight between the source point and M. 

a  

0 1

0 1

2
1 1

0 1 0 1 2
0 0

,

cos

cos

e e

P
P

e e e e e iP P
P

tP

R R
T

c c

c c
R R R R R

c c




 

  
    

  

  .(8) 

where tP  is the refracted angle and 0  and 1  are 
respectively traveled distances along the rays paths in 
liquid and solid media as defined in 

eR eR

Figure 1. The speeds 
and density in the specimen material are respectively 
denoted   for ,c P  1 S  and 1 . 0  and 0c   are 
the sound velocity and density in the coupling material 
(assumed here to be a fluid).  
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Figure 1. Definition of incident and refracted angles and of 
the ray paths between the source point S and the field com- 
putation point M. 
 

Since the transmission coefficient is real for P waves 
below the critical angle, the incident wave form will not 
be distorted at the coupling/specimen interface. 

In the case of shear waves, for an incident angle be- 
tween the longitudinal and transverse critical angles, the 
harmonic transverse transmission coefficient is complex. 
The scalar potential corresponding to SV waves pro- 
duced at point M is:  

     

   

0,

0

, ,
2

,

SV
y tSV i e

pastille SV

SV
SV e

v t T
dM t C t

R

v t T h M t

s   
 



  


,  (9) 

with 

     ,, ,
2

SVSV
e tSV i e

pastille SV

t T
h M t C t

R


  

 
 ds .   (10) 

By expressing, for a positive frequency  , the trans- 
mission coefficient as  

      , ,, , exptSV i i iC R j   
  ,       , 

it can be shown that, unlike the case of a longitudinal 
wave, the waveform relative to the SV refracted field (in 
the focal region of a focused transducer or in the far field 
of a plane one) is in good approximation not directly 
proportional to the particle velocity but is the result of a 
time convolution of this speed with a time function 

1 ,i f t  depending on the transmission coefficient 
phase at the coupling/specimen interface. This function 
will correspond to the phase distortion of a plane wave 
refracted into a shear wave at the interface for an inci- 
dence beyond the longitudinal critical angle where the 

refracted P wave becomes evanescent.  
Indeed the waveform relative to the SV refracted field 

is:  

   
 

 

   

,

,

0 0

1 0

sin
, cos( )

, .i

M t t
t

f t v t





v t  





 

 
 
  
 
 

 


 (11) 

2.2. Defect Response Modeling 

2.2.1. Description of the Modeling Process 
Unlike the calculation field, the echoes simulation of a 
given flaw inspection configuration doesn’t directly ad- 
mit a physical data as input since its entry is a signal ob- 
tained from an experimental echo due to the specular 
reflection on a calibration flaw. Indeed, this reference 
echo seems to have no direct relation-ship with the cur- 
rent flaw inspection to simulate since the calibration can 
use a different flaw than the current one and be carried 
out in a different inspection configuration. Nevertheless, 
the input signal for defect response simulation must be 
chosen to have a link with a physical data. Indeed, as 
shown in Section 2.2.3, this input signal  _Sig ref t  is 
chosen so as to be equal to the second time derivative of 
the acoustic particle velocity characterizing the vibration 
of the single or two identical transducers used in the cur- 
rent inspection:  

   2
0

2
_

v t
Sig ref t

t




 .       (12) 

The echoes calculation needs consequently to perform 
an experimental measurement on a calibration reflector 
to obtain the input signal for the simulation. Usually, a 
flat bottom hole or a side drilled hole is employed in that 
aim.   

The output of the Defect response module is the total 
strength applied on the receiving transducer surface: 

   , d
receiver

p t p P t s  .  (13) 

Here P is one mesh point of the receiver surface,  
is an elementary surface on the receiver surrounding the 
point P and 

ds

 ,p P t  is the acoustic pressure at P. 
We assume that the measured echographic response is 

proportional to the total force acting over the receiver 
surface. The model used for echo computation theoretic- 
cally expresses an echo generated by a flaw in terms of 
the second time derivative of the acoustic particle ve- 
locity (i.e. the input signal for echo computation 

 _Sig ref t ). From now, we will indeed suppose that 
the incident field observation point M will belong to the 
flaw and so M will denote the flaw. So the total strength 
on the receiver in time domain is modeled thanks to a 
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transfer function  ,echo f M t  (the echographic impulse 
response from a defect noted M for simplification is- 
sues):  

   ,echof M t 

t

  , , ,

 _p t Sig ref t



,

.   (14) 

Consequently, the model simulates all the propagation 
phenomena from the outer emitter surface to the receiver 
surface. The electro-acoustic transduction is not taken 
into account for both emitter and receiver. 

The theoretical expression of the echographic impulse 
response from a defect is established in next section and 
in Appendix in the case of a direct P wave echo and 
given by Equation (A.24).  

2.2.2. Expression of the Direct Echo Backscattered by 
a Flaw 

a) P backscattered echo 
Then the defect response model calculates the echoes 

scattered by a flaw. We report here the main general as- 
sumptions applied to deal with the application under 
consideration. The beam computation model computes 
the transient bulk wave incident beam using the pencil 
method. But a simplified description of the so modeled 
field is assumed for the echo modeling process and only 
some information (listed later) extracted from the beam 
computation are used for echo calculation. Indeed the 
ultrasonic field radiated by the transducer and computed 
by the beam computation model is approximated by the 
product of a spatial function  describing the 
amplitude module distribution in the beam and a time- 
dependent function describing the wave propagation. For 
P waves, this time function is approximated by the parti- 
cle velocity 0 , both time and phase shifted. This 
pulse phase distortion is well taken into account in the 
defect response model but is not mathematically repre- 
sented in the following formalism for stereographical 
simplification. Although there’s no signal phase distor- 
tion for P waves due to the refraction at the coupling/ 
specimen interface (contrary to SV waves beyond critical 
incidence), a phase shift, compared to the velocity parti- 
cle  of the P wave field signal, can be observed 
for instance for a field computation point far from the 
probe focal axis; it is due to the summation of time 
shifted contributions from all the probe sources appear- 
ing in the Rayleigh-Sommerfeld field representation. The 
previous field simplification assumes in fact that the 
wave fronts in the beam are locally plane in the vicinity 
of a point M of a flaw: it is usually valid in far field of 
the emitter or in its focal area if focused. The incident 
field on this flaw point (in terms of velocity potential) 
can therefore be approximated as:   

 , ,q x y z

v

 0v t

     0 0P eM t q T v t h M t  x y z v t   (15) 

in which  , , x y z  are the co-ordinates of the point M in 
a frame. The quantities extracted from the field calcu- 

lation are the function  , ,q x y z , the time of flight PT , 
the signal phase shift and the mean polarization and wave 
vector directions. The previous directions are used as 
inputs of the scattering models.  

The scattering models we applied are described in 
great details in [14]. Let just say here that the flaw cen- 
tred in M is assumed to scatter, at a point M’ in the 
specimen, a spherical P wave which is characterized by a 
certain directivity pattern  , M t  and a spherical SV 
wave characterized similarly by  ,M t .  

The P and SV scattered fields (in terms of velocity po-
tential) are:  

   
1

,M t
 , ,diffr

P

r
M t M t

r c
 

  
  

 
,  (16) 

   
1

,M t
, ,diffr

y
S

r
M t M t

r c
  

  
  

 
.  (17) 

 ,M t  and  ,M t  depend on time, on the flaw 
shape and size and incident and observations directions.   

Such an approximation for the scattered field by a flaw 
is accurate if the defect is located in far field of the re- 
ceiving probe. Indeed, at an observation point located at 
a distance of many wavelengths from the flaw, the flaw 
acts like a point source generating a spherical wave.  

It can be shown in Appendix that the P-P pulse-echo 
amplitude is:  

      2
1 02 , , , vPP

M Pp t q x y z M t t T
t




      2 . 

  (18) 
Such an expression can be obviously extended to 

pitch-catch configurations. In case of a P- > P wave, the 
waveform echo derives therefore directly on the particle 
speed which is convolved with the scattering operator 
 ,M t  and then time derived. The echo expression is 

easily rewritten versus the reference signal using (12): 

 
     2

12 , , , _ 2

PP
M

P

p t

q x y z M t Sig ref t T     dt
(19) 

If there’s no phase distortion at the coupling/specimen 
interface (usually the case for P wave field near the focal 
axis), a phase shift (if observed) in the direct echo signal 
is only due to the scattering by the flaw.  
b) SV backscattered echo 

We define  ,SV SVB M t  as the SV-SV scattering op- 
erator. It can be shown in a similar manner than for P 
waves that the SV-SV pulse-echo amplitude is: 

 
   

   
 0 2

1

1 1

, 2
2 ,

, , SV

SV SV
M

SV SV SV

i i

p t

B M t v t T
q x y,

t f t f t


  

  
   

   
 z

(20) 
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 , ,svq x y z  is the spatial function describing the am- 
plitude module distribution in the refracted SV beam. The 

echo expression is easily rewritten with respect to the 
reference signal: 

 

 
   

   
 2

1

1 1

, _ 2
2 ,

, , SV

SV SV
M

SV SV SV

i i

p t

B M t Sig ref t T
q x y z

f t f t


 

  
      

  , dt
                      (21) 

 
With respect to the input signal, a phase distortion can 

be observed in the simulated echo due to: 
 the P->SV refraction at the coupling/specimen inter- 

face. The phase shift at the coupling/specimen inter- 
face (related to  1 ,if t ) takes place twice, one for 
emission and one for reception.  

 the scattering from the flaw. 

2.2.3. Calibration 
When using an amplitude calibration, the output echo 
amplitude of the current modeled flaw is normalized by 
the reference flaw amplitude and this amplitudes ratio 
corresponds to the ratio of the received electrical signals 
for the current and calibration defects. The reference 
specular echo  PP

refp t  from a large plane surface (entry 
specimen surface or FBH) can be accurately modeled by 
the Kirchhoff approximation [8], a high frequency model 
valid for large flaws compared to the wavelength. Using 
Equation (10.45) in [4], the reference scattering operator 
in terms of velocity potential is then given as follows in 
the case of P waves, S being the calibration target surface:  

 ,
2 P

S
A M t

c t


 

 
   (22) 

From Equation (A.22), it comes: 
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Consequently, the calibration echo from the reference 
large plane target is directly proportional to the second 
time derivative of the acoustic particle velocity and the 
choice stated by (12) for the input signal is justified: 

    21 , , _ 2PP
ref P

P

S
p t q x y z Sig ref t T

c


     (24) 

Contrary to Schmerr’s one, the chosen input signal is 
simply the experimental specular echo from a reference 
block (front surface) or from a common large plane cali- 
bration reflector (FBH) located in far field (or in the fo- 
cal area in case of a focused probe). Contrary to 
Schmerr’s procedure (see Equation (7.4) in [4]), a spec- 
tral signal deconvolution of the reference echo by a mo- 
deled echographic impulse response is not required 
thanks to the simple use of the Kirchhoff approximation. 
Indeed, the choice of the input signal (Equation (12)) is 

sufficient to characterize the probe electro-acoustic tran- 
sduction since it is directly linked to the probe output 
velocity  0v t .  

3. Influence of Some Configurations 
Parameters on the Amplitude of 
Simulated Results 

We will determine here if we can compare the ampli- 
tudes between several simulations, when changing some 
inspection parameters. The influence of several simula- 
tion parameters on simulated results will be studied. 

For the case of the beam computation module, the ob- 
jective of field computations is rather to estimate beam 
sizes or to evaluate beam variations when changing sev- 
eral inspection parameters. The precise knowledge of the 
input signal (particle velocity) is not required. The use as 
input signal of a signal deduced from manufacturers’ 
data (centre frequency, bandwidth) will be sufficient. In 
this section, for the beam computation module, it is the 
absolute amplitude of the simulated results which will be 
compared between several simulations.   

For the case of the defect response model, the ampli- 
tude comparison will be operated on the relative (nor- 
malized) amplitude of the simulated results which will be 
compared here between several simulations. The nor- 
malized amplitude of an echo signal is the ratio of the 
absolute amplitude of this signal by the amplitude of a 
simulated echo from a calibration target. 

3.1. Comparison between Two Different 
Inspection Configurations at the Same 
Frequency Using the Same Transducer 

This case means that we want to compare the simulated 
amplitudes for two different configurations using the 
same transducer, for instance by changing the incident 
angle of the probe or by replacing the coupling or speci- 
men material.  

Since the same probe is used, the different simulations 
will be carried out by choosing the same input signal for 
each calculation. The term transducer refers to the piezo- 
electric element and consequently using the same trans- 
ducer induces no change in the piezoelectric material and 
in its shape (all the dimensions of the crystal). It is re- 
called that the crystal thickness is directly linked to its 
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resonance frequency and so to the centre frequency of the 
probe.  

3.1.1. Field Computation 
In such a comparison, there’s no change in the acous- 

tic particle velocity since the same transducer is used in 
the different configurations. Consequently, the absolute 
amplitudes of the simulated fields radiated in the differ- 
ent configurations can be compared.  

3.1.2. Defect Response Model 
The electro-acoustic transduction is identical for these 
two configurations with the same transducer. So it is 
possible to compare the normalized amplitudes of dif- 
ferent simulations in order to evaluate the sensitivity of 
echoes amplitude to one or several parameters. The ref- 
erence measurement (used to fix the input signal and the 
normalization amplitude) can be carried out for instance 
in one of the simulated configurations we would want to 
compare.  

In conclusion, for the two ultrasonic models, we can 
evaluate in simulation with a good precision the influ- 
ence of simulation parameters (as replacing the incident 
angle or the specimen material).  

3.2. Comparison between Two Different 
Inspection Configurations at the Same 
Frequency Using Two Transducers of Same 
Thickness but Different Aperture 
Dimensions 

The conclusions are similar to the previous case (same 
dimensions) since we can suppose in a good approxima- 
tion that the electro-acoustic transduction and the particle 
velocity don’t vary with respect to the crystal aperture 
dimensions (for instance, the diameter for a circular 
probe). Indeed, the model assumes that the transducer 
acts as a piston: the velocity is uniform on its surface, 
whatever the size and the shape of the radiating surface.  

3.3. Change in the Signal Centre Frequency 

In that case, the input signal differs from one simulation 
to the other. The electro-acoustic transduction is not mo- 
deled in the developed tools: moreover it varies from one 
transducer to the other and consequently depends on fre- 
quency.  

3.3.1. Beam Computation 
Since there’s no account of electro-acoustic transduction, 
the frequency effects on the propagation phenomena oc- 
curring only between the transducer surface and the 
beam computation point can be evaluated. Consequently, 
the variation versus frequency of the radiated beam cha- 
racteristics (for instance the beam focal width or diver- 

gence) can be estimated.   

3.3.2. Defect Response Model 
For the defect response model, when comparing several 
simulations at different frequencies, all the propagation 
and interaction phenomena between the emitting and 
receiving cables (notably the electro-acoustic transduc- 
tion) can be taken into account so as to better approach 
the physical reality. Indeed, we relax the absence of 
modeling of the electro-acoustic transduction, by com- 
paring the variation with frequency of the ratio of echoes 
amplitudes from a defect and a calibration flaw. As the 
echo amplitude from the calibration flaw will in all cases 
depend on frequency, this method will not show only the 
variation with frequency of the echo amplitude from the 
defect of interest. 

The procedure to follow in order to study at different 
frequencies the ratio of echoes amplitudes from a defect 
and a calibration flaw is given hereafter. An echo com- 
putation is supposed, in the view of reproducing the 
physical reality, to be completed by a measurement on a 
calibration flaw. This measure must be carried out at 
each frequency to choice the valid input signal in the 
simulation. In order to evaluate the frequency variation 
observed on echoes calculations (and eventually to com- 
pare it with measure), it is needed to:  
 make measurements at each frequency: one on the 

current defect and one on a calibration reflector.  
 perform simulations of these two measurements, us- 

ing in modeling an input signal deduced from the ex-
perimental echo on the calibration reflector at each 
frequency. 

 normalize at each frequency the echoes amplitudes by 
those of the reference defect both on experimental 
and simulated data. 

In conclusion, the variation with frequency of the ratio 
of echoes amplitudes from a defect and a calibration flaw 
can be studied thanks to the developed defect response 
model. 

3.4. Comparison between Two Different 
Transducers Radiating at the Same 
Frequency 

The conclusion is the same as for the effect of a change 
in the centre frequency. 

4. Conclusions 

A complete reciprocity-based ultrasonic measurement 
model has been designed to simulate ultrasonic Non- 
Destructive Evaluation (NDE); it can also be used for 
other applications of ultrasonic echography as telemetry 
[18]. The two components of this model (beam computa- 
tion and defect response model) have been theoretically 
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described. The physical meaning of the inputs/outputs 
used in these modeling modules has been defined. Then 
it has been theoretically shown that the simulated results 
can be compared between each other in terms of ampli- 
tude for numerous applications when changing some 
inspection parameters in the simulation. For instance, the 
comparison of simulated amplitudes can be performed 
for both fields and echo models when using the same 
transducer but changing in simulation the incident angle, 
or the coupling or specimen material. The previous abili- 
ties of the developed model are of great interest for in- 
dustrial NDE simulation which is commonly used to op- 
timize the parameters of inspection (incidence angle, 
wave mode, probe characteristics, frequency…) of a 
specimen including potential flaws. 

As to the complete measurement model, it has been 
pointed out that it is needed to make a calibration meas- 
urement on a reference flaw to avoid the electroacoustic 
transduction modeling. Such a calibration allows to study 
frequency effects by simulating the frequency depend-
ency of the ratio of echoes amplitudes from the current 
and the reference flaws. The proposed model offers the 
possibility of a very simple choice for the input modeling 
signal: this signal is directly taken as the experimental 
echo on a large planar reference target. Experimental 
validations of this simulation tool have been successfully 
performed [5,19]. 
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Appendix 

Echo modeling and field reciprocity principle 

The aim of this appendix is to establish in the case of P 
waves (longitudinal wave incident on the defect, longitu- 
dinal wave diffracted) the expression of the correspond- 
ing echo which is linked to the average pressure on the 
receiving transducer surface.  

The scattered velocity potential at a point M’ in the 
solid specimen has been defined as: 

   
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,
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M t r
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Moreover we already expressed the incident field as 
follows: 
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Thus 
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The velocity potential diffracted by the defect is at a 
point P in the liquid medium after the refraction at the 
solid-liquid interface:   

     
 

 , 0v
, ,

r
P P

tP r r
P

t T T
P t C M t q x y z

R
  

 
   , , ,

(A.2) 

where the time of flight and divergence factor for recep- 
tion are : 
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For simplifications issues, we will consider in the  

following that a coefficient  ,f g

iC   (respectively 
 ,f g

rC  ) corresponds to the transmission coefficient at 
the liquid-solid interface for the emission path (respect- 
tively solid-liquid interface for the reception path). r  
and liq  are the incident and refracted angles at the 
solid->liquid interface for the reception path. These an- 
gles depend on the corresponding path included in the 
probe aperture. 1  and 0  are the propagation dis- 
tancesin the solid and fluid media. In the case of a P 
wave incident on a solid-liquid interface with an incident 
angle less than the longitudinal critical angle, the trans- 
mission coefficient in harmonic regime is always a real 

rR rR

   ,, ,tL rC 
tL rC      which does not depend on fre- 

quency. It is also the case for the emission transmission 
coefficient  i

,

tLC   .  
The electrical signal measured at the receiver output is 

proportional to the average pressure on the transducer. 
We will now express the simulated echo which is the 
total force applied on the receiver surface (product of the 
average pressure by the transducer area): 
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The previous expression represents the calculation of 
the total strength applied on the receiver surface versus 
the velocity potential (scattered by the flaw in M) on 
each point P of this surface. The previous expression is 
obtained from the following relation demonstrated just 
after which connects the pressure p  and the velocity 
potential v : 
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Using the Bernoulli's equation on the velocity v

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and: 
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we obtain the relation (A.5) to demonstrate since: 
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From the previous Equations (A.1) and (A.5), it comes: 
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We assume now that  , A M t  is constant over the 

receiver surface: 
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The integral of the previous formulation corresponds 
to the receiving transducer response (i.e. the field in re- 
ception). This integral is similar to that expressing the 
incident field potential radiated at the point M and differs 
only by a proportionality factor, as shown in Equation 
(6). This similarity expresses a field reciprocity between 
emission and reception.  

In the following, we will calculate the proportionality 
factor and show the simplifications obtained due to re- 
ciprocity considerations.  
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with 
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 ,rh M t is called the reception impulse response and 
corresponds to the sensitivity of the receiver to a sphere- 
cal wave source located at point M. We can also define 
the receiver field impulse response  as the ve- 
locity potential produced at point M by the receiving 
transducer considered as an emitter and subjected to a 
particle speed :  
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The field radiated by the receiver at point M is directly 
 in terms of velocity potential.    0v rt h M t ,


We will show now that the reception impulse response 

 previously involved in the echo formulation is 
proportional to the receiver field impulse response 

 ,rh M t

 ,rh M t . Indeed,  differs from  ,rh M t   ,rh M t  
only by the transmission coefficient and the divergence 
factor (inside the integral) which are calculated in a di-
rection from point M to the transducer rather than the 
opposite.   

For notations simplification, we will consider now a 
pulse echo configuration to express easier the reciprocity 
between transmission and reception (it could be demon- 
strated in a same manner for other kind of configure- 
tions). In pulse echo and for P waves, r
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A reciprocity relation can be obtained for transmission 

coefficients [18] involved in emission and reception: 
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where 1  is the density of the solid and 0Z   

0 0 cos ic   and 1 1 1 cosP P tPZ c    are the oblique 
impedances respectively in the liquid and solid media for 
longitudinal waves. 

A reciprocity relation can also be obtained for diver- 
gence factors involved in emission and reception: 
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We finally obtain: 
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This ratio is a constant which doesn’t depend on the 
incident angle and so on the path linking the point M to 
one source point on the transducer. 

This following proportionality between these impulse 
responses expresses the reciprocity between emission 
and reception: 
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In pulse echo configuration, the emitter and receiver 
are identical and 

  ,r eh M t h M t , ,  (A.19) 

  1

0

,r eh M t h M t



 , .  (A.20) 

The expression of the total force applied on the re- 
ceiver is finally from (A.11): 
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(A.21) 
and then 

        2
1 02 , v 2 ,PP

M Pp t A M t t T q x y z
t




    ,  

(A.22) 
P   thus: The P wave echo is proportional to the square of the 
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spatial distribution of the radiated field potential. The 
echo waveform is obtained from the particle velocity by 
convolution with the flaw impulse response (scattering 
operator) and a time derivation. We can express the echo 
versus the input reference signal: 

 
     2

12 , , , _ 2

PP
M

P

p t

q x y z M t Sig ref t T t     d

.

 

(A.23) 
The above equation describes the relationship between 

the output and input of the defect response model for P 
waves in a pulse echo configuration.  

We can finally establish the expression of the echo 
graphic impulse response from the defect: 

     2
1, 2 , , , 2 decho Pf M t q x y z M t T t     (A.24) 
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