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Summary

Proposing efficient numerical modeling tools for high-frequency wave propaga-
tion in realistic configurations, such as the one appearing in ultrasonic testing
experiments, is a major challenge, especially in the perspective of inversion
loops or parametric studies. We propose a numerical methodology addressing
this challenge and based upon the combination of the spectral finite element
method and the mortar element method. From a prior decomposition of the
scene of interest into “macro-elements,” we show how one can improve the
performances of the standard finite element procedures in terms of memory foot-
print and computational load. Additionally, using this decomposition, we are
able to efficiently reconstruct important modeling features on-the-fly, such as
orientations of anisotropic materials or splitting directions of perfectly matched
layers formulations, altogether in a robust and efficient manner. We believe that
this strategy is particularly suitable for parametric studies and sensitivity analy-
sis. We illustrate our strategy by simulating the propagation of an ultrasonic wave
into an immersed and curved anisotropic laminate 3D specimen flawed with an
internal circular delamination of varying size, thus showing the efficiency and
the robustness of our approach.
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1 INTRODUCTION

Throughout decades of their intensive use, nondestructive testing (NDT) techniques have become a major asset in
numerous advanced industrial fields such as nuclear energy industry, petrochemical industry, or aeronautics. Traditional
ultrasonic testing (UT) methods1 based upon the propagation of a high-frequency bulk wave within materials or manu-
factured products keep a major place among existing NDT techniques. Concurrently, the role of UT modeling2 has been
continuously increasing3 as a support of the experimental data analysis and postprocessing,4,5,6 the analysis and design of
transducers,7,8,9 or the evaluation of UT processes.10,11 These examples of application often require exploring the output
response of a so-called forward solver by varying the input data. This sensitivity analysis typically entails a large number
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of direct simulations that are generally embedded within an inversion algorithm. Hence, proposing useful modeling tools
should be performed following a primary goals:

(G1) The forward solver should be able to efficiently handle parametric variations of the configuration of interest.

In the scope of this communication, the presented work is driven by a second major goal, which results from our wish
to make the modeling tools accessible by a nonspecialist end user, eg, through a commercial software such as the CIVA
platform.12

(G2) No specific hardware architecture should be required from the end user in order to support the simulation's runs.

In the context of high-frequency wave propagation, apart from dedicated analytic solvers as proposed, eg, in the work
of Shen and Giurgiutiu,13 one can consider without being fully comprehensive at least two principal families of generic
modeling strategies. First, the class of asymptotic methods14,15 relying on an asymptotic expansion of the wave field w.r.t.
the frequency is widely spread in the NDT16,17 and seismic waves18,19 modeling communities. This type of methods pro-
vides an efficient and meaningful way to represent the propagation of waves over large distances. However, due to the
truncation of the asymptotic development, they fail to represent various, and potentially important, phenomena such as
diffraction by small flaws or reflections at critical angles. Second, a full-wave modeling of the propagation phenomena can
be obtained using numerical methods, such as finite element methods,20,21 finite difference methods,22 boundary element
methods,23 or more recent developments24,25 based upon these standard strategies. Nevertheless, as they are based upon
discretization steps related to the wavelength scale, they often require dedicated solvers based upon specific hardware
architectures26,27,28,29,30 in order to achieve sufficient performances.

In our work, we propose a UT modeling numerical tool based upon a “macro-element” strategy that satisfies both our
primary goals (G1) and (G2). This strategy relies on the assumption that the geometry associated to the UT configuration
can be decomposed into subdomains. Each subdomain is defined as the transformation of a reference macro-element, the
unit cube in 3D, and is assigned to a unique formulation (eg, acoustics, elastodynamics, or absorbing layers, with poten-
tially inhomogeneous material properties). In order to provide an efficient fully discrete propagator, each macro-element
is subdiscretized, depending on the estimated wavelengths of interest, using the spectral finite element method.20,21, 31 The
communication between the various formulations assigned to the macro-elements is handled using the mortar element
method.32,33,34

In this context, a first novelty presented in this communication consists in making the most of this macro-element strat-
egy so that (1) we significantly increase the performances of standard finite element procedures in both memory and CPU
load; (2) we are able to conduct an efficient and lightweight on-the-fly reconstruction of relevant modeling features, such
as material anisotropic orientations. Furthermore, since a core challenge of this strategy is to handle the communication
between macro-elements, we propose a specific coupling formalism based upon the mortar element method leading to a
fully explicit global scheme.

The outline of this paper is as follows. In Section 2, we recall the main components of the discrete propagators built
upon spectral finite elements for each formulation of interest. This enables us to detail in Section 3 the macro-element
strategy and how it addresses goals (G1) and (G2). In Section 4, we show how the mortar element method can be used
in practice to efficiently connect neighboring macro-elements with potentially different formulations. In Section 5, we
illustrate our strategy in the context of the UT of curved carbon fiber reinforced polymer (CFRP) composite structures in
a 3D setting. We finally give some conclusions and perspectives in Section 6.

2 DISCRETE PROPAGATORS BASED UPON SPECTRAL FINITE ELEMENTS

We consider the propagators for the fluid, solid, and corresponding perfectly matched absorbing layers (PMLs). They
form the minimal set of formulations that one needs to handle in order to address most of the UT configurations. In this
section, we recall the main components of the finite element method employed to propose discrete propagators for every
formulations, in order to clearly list the benefits brought by the macro-element strategy in the next section. For further
details on finite elements, we invite readers to refer to other works20,21,35,36 for a comprehensive presentation in the case
of acoustic and elastodynamics and to the works of Bécache et al,37 Joly,38 and Demaldent and Imperiale39 for the PML
formulations.
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2.1 Fluid, solid, and PML formulations
In the following, we consider Ω ⊂ Rd, with d = 2 or d = 3, a bounded computational domain bearing one of the possible
formulations. We represent by 𝜕Ω its boundary and by n the corresponding exterior normal vector field. We denote the
coordinates in Ω by x = (x1 … xd)⊺ ∈ Rd, and by

∇xu =
(
𝜕u
𝜕xi

)d

i=1
, ∇

x
v =

(
𝜕vi

𝜕x𝑗

)d

i,𝑗=1
,

the gradient of a scalar and vector field, respectively. Accordingly, the divergence operators of vector and tensor fields are
denoted by

∇x · v =
d∑

i=1

𝜕vi

𝜕xi
, ∇x · w =

( d∑
𝑗=1

𝜕wi𝑗

𝜕x𝑗

)d

i=1

,

so that the scalar Laplacian operator simply reads Δxu = ∇x · (∇xu). In the case of a fluid domain, the material is charac-
terized by its mass density 𝜌, assumed constant for simplicity, and its sound velocity c. The wave equation satisfied by the
acoustic pressure p reads

1
𝜌c2

𝜕2p
𝜕t2 − 1

𝜌
Δxp = 0 in Ω, ∇xp · n = 0 on 𝜕Ω, (1)

along with given initial conditions. The weak formulation associated to (1) consists in finding p ∈ V = H1(Ω) for any
time t > 0, such that, for any test function p∗ ∈ V,

d2

dt2 m(p, p∗) + k(p, p∗) = 0, (2)

where m(·, ·) and k(·, ·) are two bilinear forms defined by

m(p, p∗) = ∫Ω

1
𝜌c2 p p∗dΩ, k(p, p∗) = ∫Ω

1
𝜌
∇xp · ∇xp∗dΩ. (3)

In the case of a solid domain, the displacement field 𝑦 satisfies the following field equation:

𝜌
𝜕2𝑦

𝜕t2 − ∇x · 𝜎 = 0 in Ω, 𝜎 · n = 0 on 𝜕Ω, (4)

with 𝜌 being the mass density, and 𝜎 being the stress tensor field. We complete (4) with relevant initial conditions. The
linearized Green-Lagrange tensor and the stress tensor are linked through a linear constitutive law

𝜎 = 𝜀(𝑦), 𝜀(𝑦) = 1
2

(
∇

x
𝑦 + ∇

x
𝑦⊺
)
.

We assume that the fourth-order tensor  can be decomposed into a constant tensor ∗ defined in a local orthonormal
basis {ei}

d
i=1,

 (x
)
=

d∑
i,𝑗,k,l=1

C∗
i𝑗kl ei(x)⊗ e

𝑗
(x)⊗ ek(x)⊗ el(x), ∀x ∈ Ω, (5)

so that  satisfies the standard symmetry and positivity conditions. The corresponding weak formulation is similar to (2)
where, for any test function 𝑦∗ ∈ V = [H1(Ω)]d, the bilinear forms are

m
(
𝑦, 𝑦∗

)
= ∫Ω

𝜌𝑦 · 𝑦∗dΩ, k
(
𝑦, 𝑦∗

)
= ∫Ω

𝜀(𝑦) ∶ 𝜀
(
𝑦∗
)

dΩ. (6)

In addition to these natural formulations, we are interested in formulations addressing the challenge of numerically
representing infinite propagation areas. Building such formulations is an active field of research that goes beyond the
scope of this paper. Hence, without going into details, we use as is a class of absorbing layers referred to as PMLs and, more
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specifically, the formulation proposed in the work of Demaldent and Imperiale.39 In the acoustic case, it is a first-order in
time formulation based upon split pressure variables {pi}d

i=1 and a velocity variable v, satisfying

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p =
d∑

i=1
pi,

1
𝜌c2

𝜕pi
𝜕t

+ ∇x ·
((

si ⊗ si

)
v
)
+ 𝜏i

1
𝜌c2 pi = 0, i = 1, … , d,

𝜌
𝜕v
𝜕t
+

d∑
i=1

∇x pi +
d∑

i=1
𝜏i
(

si ⊗ si

)
v = 0.

(7)

The formulation (7) is completed with relevant initial conditions and boundary conditions. In (7), {si}
d
i=1 are the split-

ting directions, and {𝜏i}d
i=1 are the absorbing coefficients. In practice, these directions can be the canonical basis of Rd

or potentially another set of varying orthonormal directions. In the former case, we refer to the work of Demaldent and
Imperiale39 for the discussion of the “perfectly matched” condition of this formulation. We also refer to the aforemen-
tioned work39 for the expression of the corresponding weak formulation. For solid domains, we consider the similar split
first-order formulation. In the scope of this paper, we cast aside the issue of PML stability, and we assume that the mate-
rial properties ∗ in (5) allow for a stable use of this formulation. Readers may refer to the works of Bécache et al37 and
Joly38 and references therein for more details on this matter.

2.2 Generalities on spectral finite elements
In this section, we propose to go through the key notions of the finite element discretization. To simplify the presentation,
we consider mainly the scalar case and systems of the form of (2). This will enable us to introduce the principal notations
in order to detail the benefits of the macro-element strategy later on.

2.2.1 Fully discrete scheme
We consider a Galerkin approximation space Vh ⊂ V generated by the basis functions {𝜑I}

Nh
I=1, with Nh = dim(Vh). We

define the matrix form of the discrete (in space) counter part of (2) as

M
d2−→P
dt2 +K

−→P = 0. (8)

In (8), −→P ∈ RNh is the vector regrouping the coefficients of the discrete solution on the basis of Vh. The matrices M and K

are the so-called mass and stiffness matrices defined as

MIJ = m(𝜑I , 𝜑J), KIJ = k(𝜑I , 𝜑J), ∀I, J = 1, … ,Nh.

The fully discrete scheme is obtained by employing an explicit second-order leapfrog time scheme

M

−→P n+1 − 2−→P n + −→P n−1

Δt2 +K
−→P n = 0, (9)

which is stable upon the following Courant-Friedrichs-Lewy (CFL) condition (see, eg, the work of Joly40 or Appendix A)

Δt ≤ 2√
r (M−1K)

, (10)

where r(·) represents the spectral radius of a matrix. Note that this discretization procedure trivially extends to the elasto-
dynamic case with relevant changes in the bilinear forms defined in (6). For PML formulations, we also use a time scheme
consistent of order 2, such as in the work of Demaldent and Imperiale.39

2.2.2 Spectral finite elements and mass lumping
Lagrange finite element methods35 propose a specific construction of the approximation space Vh based upon a given mesh
h of the computational domain. In the following, we consider meshes of hexahedral (or quadrilateral) elements satisfying
the standard conformity constraints. The space Vh is defined as the space of functions that are globally continuous and
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that have a local, ie, per element, polynomial representative in a reference element. More precisely, assuming that each
element K ∈ h is the result of a diffeomorphism FK applied onto a reference cube (or square) K̂, we have, for any vh ∈ Vh,

∀K ∈ h, ∃k = k(K) ∈ N
∗d, ∃!̂vK ∈ k

(
K̂
)
, vh|K = v̂K ◦ F−1

K . (11)

In (11), k is the space of polynomials expressed as the tensor product of one-dimensional polynomial spaces, and we
denote by n̂h its dimension

∀k = (k1 … kd)⊺ ∈ N
∗d, k(K̂) =

d∏
p=1

kp([0; 1]), n̂h = dim
(k) = d∏

p=1
(kp + 1).

We define on the reference element a set of n̂h nodes Ξ̂ = {𝜉
i
}n̂h

i=1, and we denote by {�̂�i}
n̂h
i=1 the associated local Lagrange

polynomial basis. From the transformation of these local nodes by every FK , we obtain the set of global nodes Ξ = {𝜉
I
}Nh

I=1,
from which we have discarded every redundant coordinates at element boundaries. The global Lagrange basis functions
of Vh are linked to the local Lagrange polynomials through

∀K ∈ h s.t. 𝜉
I
∈ K, ∃!iK ∈

{
1, … , n̂h

}
, 𝜑I|K = �̂�iK◦F−1

K . (12)

In (12), we have implicitly introduced the “local-to-global” index mapping

𝓁G ∶ h × ⟦1; n̂h⟧→ ⟦1;Nh⟧, s.t. I = 𝓁G(K, iK). (13)

Note that, in (11), we allow functions in Vh to be locally represented by polynomials with orders potentially different in
every directions. This particularity will be referred to as “anisotropic” orders of approximation. We will see in Section 5
that anisotropic orders enables a local adaptation of the discretization, in order to efficiently take into account thin layers
of materials.

In the context of hexahedral (or quadrilateral) elements, a convenient way to define a proper set of Lagrange nodes
Ξ̂ is by tensor product of d one-dimensional point distributions. The spectral finite element method is based upon
Gauss-Lobatto points for defining these one-dimensional point distributions. Due to their optimal convergence, as the
order of approximation increases,31,41 they have received a significant amount of interest in numerous fields of applica-
tion. In the context of transient wave propagation modeling, spectral elements are particularly interesting since they allow
for consistent “mass lumping” at any order of approximation.20,21,36,42 Broadly, this approach aims at approximating the
mass matrix in (9) by a diagonal one, in order to obtain a fully explicit scheme. This approximation of the mass matrix
is performed using a specific quadrature formula for computing the integrals appearing in the local mass matrices. The
main conditions to achieve consistent mass lumping are the following21,36,43:

i. the quadrature points and the nodes must coincide to obtain diagonal local mass matrices;
ii. for stability reasons, the quadrature weights need to be strictly positive;

iii. the quadrature formula must be exact at least for polynomials of order 2k−2, in order to be as consistent as the case
of an exact integration.

For hexahedral (or quadrilateral) elements, these three specific conditions are only satisfied by the Gauss-Lobatto
quadrature formula. Spectral finite elements and mass lumping extend to elastodynamics20,36,44 and PML formulations.37,39

2.2.3 Local stiffness operations
In practice, the diagonal mass matrix is assembled and stored in an initializing step of the numerical scheme. Hence, the
main computational load in (9) comes from the application, at each time step, of the stiffness matrix to a finite element
vector. Traditionally, the application of the global bilinear form is decomposed into the application of element-wise forms.
Upon the assumption of a constant mass density of the fluid, we have

k(vh,wh) =
1
𝜌

∑
K∈h

k̂K(vh,wh), ∀vh,wh ∈ Vh.

After a change of variable and using the local polynomial representatives of vh and wh, as in (11), the local stiffness
operator reads

k̂K(vh,wh) = ∫K̂

(
∇

x̂
F−⊺

K ∇x̂ v̂K

)
·
(
∇

x̂
F−⊺

K ∇x̂ŵK

)
JK dΩ̂, (14)
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where JK = | det(∇
x̂
FK)|. For conciseness, we introduce the notation

G
K

(
x̂
)
=

co
(
∇

x̂
FK

)⊺

co
(
∇

x̂
FK

)
JK

||||||||||x̂
, ∀K ∈ h, ∀x̂ ∈ K̂, (15)

where co(·) is the cofactor matrix. As for the mass matrix, we use a Gauss-Lobatto quadrature formula to approximate the
integral in (14). We denote by {𝜔q}

n̂q
q=1 and {x̂q}

n̂q
q=1 ⊂ K̂ the quadrature weights and points. The local stiffness operators

(14) are approximated by

k̂K(vh,wh) ≈ k̂Q
K(vh,wh) =

n̂h∑
q=1

𝜔q

(
∇x̂ v̂⊺K G

K
∇x̂ŵK

)||||||�̂�
q

. (16)

Denoting by {𝛼K,i}
n̂h
i=1 the coefficients of the local functions v̂K in the Lagrange polynomial basis

v̂K
(

x̂
)
=

n̂h∑
i=1

𝛼K,i �̂�i
(

x̂
)
, ∀x̂ ∈ K̂,

the expression of the corresponding gradient at the quadrature points reads

∇x̂ v̂K

(
�̂�

q

)
=

n̂h∑
i=1

𝛼K,i∇x̂�̂�i

(
�̂�

q

)
.

Introducing the matrix ̂ ∈ d×nh,nh (R) such that

∀i, 𝑗 = 1, … , n̂h, ∇x̂�̂�i

(
�̂�
𝑗

)
=
(̂d(i−1)+1,𝑗 … ̂d(i−1)+d,𝑗

)⊺
∈ R

d, (17)

the local finite element vectors representing v̂K and its gradient are given by
−→VK =

(
𝛼K,1 … 𝛼K,n̂h

)⊺
,

−−−→∇VK =
(
∇x̂ v̂K

(
�̂�

1

)
…∇x̂ v̂K

(
�̂�

n̂h

))⊺
= ̂⊺−→VK .

Regrouping in a matrix K ∈ d×nh,d×nh (R) the evaluation of (15) at every local nodes times the quadrature weights, the
local stiffness matrix (16) reads

k̂Q
K(vh,wh) =

−→VK
⊺
(̂K̂⊺

)−−→WK .

This decomposition extends to the elastic stiffness operator (6) and, for the sake of conciseness, is left to the reader. Similar
arguments can also be used in the context of PML formulations in order to derive factorized forms of the bilinear operators
appearing in the weak form of (7).

3 A MACRO-ELEMENT STRATEGY

3.1 Primary division of the computational domain
In the following, we consider a more complex configuration where, within the bounded domain Ω, multiple formulations
(fluid, solid, or PML) can be considered. We assume that the computational domain is decomposed into N subdomains,

Ω =
N⋃

i=1
Mi,

and that each subdomain Mi, referred to as a macro-element, is built from a polynomial transformation 𝜙
i

of a reference
cube (or square) M̃,

∀i = 1, … ,N, ∃k = (k1, … , kd) ∈ N
d, 𝜙

i
∈
[k

(
M̃
)]d

.

This division of Ω is driven by the following constraints:

• the macromesh is a conform subdivision of Ω;
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FIGURE 1 Illustration of a macro-element decomposition of a domain obtained from a cylindrical deformation of simple plate with a
centered through-hole. The black lines in the geometry represent the edges of the macro-elements. The white lines represent the internal
subdiscretization of a specific macro-element prior to and after deformation [Colour figure can be viewed at wileyonlinelibrary.com]

• to each interface between two different formulations corresponds an interface, or a set of interfaces, between two MEs
or more;

• the number of macro-elements should be minimal.

In Figure 1, we illustrate a macro-element decomposition of a curved plate having a through-hole at its center. In this
example, the macromesh is made of twelve MEs, deformed from the unit cube in order to fit the geometry of the hole.

In some cases, we may consider an additional set of polynomial transformations 𝜃i of the reference macro-element.
These transformations can be used to represent the computational domain prior to some global deformation Ψ. Let us
denote by Ω∗ the domain in this prior state such that

Ω = Ψ(Ω∗), Ω∗ =
N⋃

i=1
M∗

i =
N⋃

i=1
𝜃i

(
M̃
)
.

In Figure 1, we illustrate the case where Ω∗ represents the plane geometry prior to a simple cylindrical deformation. In
concrete applications, we might be interested in global deformations Ψ that can be a combination of cylindrical deforma-
tions, a spline deformation, or potentially more complex alterations of Ω∗ emanating from the mechanical response of
the specimen to a potential loading. The effect of this deformation onto a macro-element M∗

i can be represented by the
pair of polynomial transformations 𝜃i and 𝜙

i
, ie,

𝜓
i
= Ψ|M∗

i
= 𝜙

i
◦ 𝜃−1

i ,

and we will see in Section 3.4 how we can use this representation to incorporate important modeling features into our
numerical strategy, such as the evolution of the directions of anisotropy after deformation of the material.

3.2 Subdivision of the macro-elements
We seek, for performance purposes, a macro-element decomposition with the lowest number of subdomains. This prior
division of the computational domain is unfit for adequate numerical procedures at the wavelength scale, and we resort to
an internal subdivision of each macro-element Mi. It corresponds to a grid of hexahedral (or quadrilateral) cells deformed
by 𝜙

i
. Let us denote by ̃h,i and h,i the grid prior to and after its deformation so that, formally,

h,i = 𝜙
i

(̃h,i

)
, ∀i = 1, … ,N. (18)

Each grid cell K̃ ∈ ̃h,i is obtained from the reference element by a simple affine transformation FK̃ . For instance, for
d = 3, it reads

FK̃
(

x̂
)
=
⎛⎜⎜⎜⎝

O1(K̃)
O2(K̃)
O3(K̃)

⎞⎟⎟⎟⎠ +
⎛⎜⎜⎜⎝

h1(K̃)
h2(K̃)

h3(K̃)

⎞⎟⎟⎟⎠ x̂, ∀x̂ ∈ K̂, (19)

http://wileyonlinelibrary.com
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where {Op(K̃)}d
p=1 and {hp(K̃)}d

p=1 are the origin and the lengths of the cell, respectively. With these notations, for each
element K ∈ h,i, the transformation FK introduced in Section 2.2.2 is expressed as

FK
(

x̂
)
=
(
𝜙

i
◦ FK̃

) (
x̂
)
, ∀x̂ ∈ K̂. (20)

To each element in h,i, we associate a spectral finite element with anisotropic orders. We denote by Nh,i the number of
nodes and by

Ξi =
{
𝜉i

I

}Nh,i

I=1
, ∀i = 1, … ,N

the coordinates of the nodes. Note that (18) and (20) naturally extend to the polynomial transformation 𝜃i of the
macro-element so that we can define a mesh  ∗

h,i of M∗
i , composed of the nodes Ξ∗

i . In practice, the refinement of the grid
depends, for precision purposes, on an a priori estimation of the wavelengths of interest and on the maximal deformation
of the grid. Note that, in (19), the lengths may vary from one cell to another, as long as ̃h,i remains a conform grid. This
will be of major importance when dealing with stratified materials in Section 5.

3.3 Assumption of conform interfaces
Throughout this paper, we make the assumption that the union of every macro-element subdivisions

h =
N⋃

i=1
h,i

generates a conform mesh of the computational domain after discarding redundant coordinates at interfaces. In particular,
let Mi and Mj be two macro-elements having a face in common, say Γ, then there exists a one-to-one mapping between
the coordinates of the nodes Ξi|Γ and Ξj|Γ. Let us denote by Mh the number of nodes on the interface Γ, we can introduce
the “interface-to-volume” index mappings  i

Γ and  𝑗

Γ such that

∀k ∈ {i, 𝑗} k
Γ ∶ ⟦1;Mh⟧ −→ ⟦1;Nh,k⟧, and ∀I = 1, … ,Mh, 𝜉i

 i
Γ(I)

= 𝜉
𝑗

 𝑗

Γ(I)
. (21)

Alternatively, these mappings may be represented by the rectangular matrices Vi
Γ and V

𝑗

Γ of dimension Nh,i × Mh and
Nh,j × Mh respectively, such that

∀k ∈ {i, 𝑗} ∀I = 1, … ,Nh,k, ∀J = 1, … ,Mh
(
V

k
Γ
)

IJ =

{
1, if 𝜉k

I
∈ Γ and I = k

Γ( J),
0, otherwise.

(22)

This aspect, referred to in the following as the conform interface assumption, will have important consequences when
using the mortar element method in Section 4.

3.4 Benefits of the macro-element strategy
In order to cope with our objective (G2), we favor low-memory strategies. In this regard, we consider “unassembled” oper-
ations for representing the application of the stiffness matrix to an input finite element vector. In essence, it corresponds
to applying every local stiffness matrices, described in Section 2.2.3, to local input vectors. In the simplified configuration
where the subdomains bear an acoustic formulation, we propose the pseudocode in Algorithm 1 for performing these
operations. In this pseudocode, {−→Wi}N

i=1 represent input finite element vectors, and {−→V i}N
i=1 are the output vectors stor-

ing the results of the application of the stiffness matrices. We also consider in Algorithm 1 a standard coloring of each
element in h,i so that no elements in a color group have nodes in common.

These unassembled operations are rather natural in the context of high-frequency wave propagation modeling. How-
ever, our approach enables some significant improvements, mainly due to the fact that the underlying subdiscretization
of each macro-element is related to a reference grid in M̃. In particular, while in a general case of unstructured meshes,
the “local-to-global” mapping 𝓁G defined in (13) is usually stored, it can be recomputed at no expense within each
macro-element, thus sparing important memory load. Additionally, the matrix K in (15), built from the transformation
of the current element, can also be recomputed on-the-fly. To do so, we simply apply the transformation (20) to the local
nodes coordinates Ξ̂ and compute the gradient of the transformation using ̂⊺, defined in (17). Thus, most of the mem-
ory footprint of a macro-element comes from the three finite element vectors of the time scheme and the diagonal mass
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matrix. Note that in this context, the major part of the workload in Algorithm 1 is centered on computing gradients of
local finite element vectors. In practice, we use a specific data structure in order to improve this operation (readers may
refer to the work of Carrascal-Manzanares et al45 for more details). On top of improving the memory load, one can also
increase the CPU performance by applying the local stiffness operations in parallel. Indeed, due to the definition of the
elements coloring, the third loop in Algorithm 1 is naturally fit for parallelism. Since the topology of the mesh of a single
macro-element is essentially a grid, this coloring is trivial and optimal in the sense that (1) each color group has the same
number of elements and (2) the number of different color is minimal.

Another interesting aspect of the macro-element strategy resides in its capacity to reconstruct efficiently and on-the-fly
specific local vector fields. An important example is when a constant unitary vector, say v∗, is defined on a macro-element
M∗

i prior to its deformation byΨ. In this context, we can retrieve its local variation within the final macro-element through

v|Mi =

(
∇

x̃
𝜙

i
∇

x∗
𝜃−1

i

)
v∗

‖‖‖‖‖
(
∇

x̃
𝜙

i
∇

x∗
𝜃−1

i

)
v∗
‖‖‖‖‖
, ∀i = 1, … ,N. (23)

A natural application is the case of fiber materials, where specific material properties are defined in a privileged direction,
the fiber, while being isotropic in the orthogonal plane. One may typically define the constant fiber orientation in Ω∗

and compute the result of its transformation from (23). From the local fiber orientation, we can reconstruct any two
orthogonal directions and define a local isotropic transverse constitutive law using (5). In Section 5, we present numerical
results using this computational strategy to model curved laminate composites. A similar configuration is when a constant
unitary vector, say ṽ, is defined in the reference macro-element M̃. We can retrieve, within each macro-element, its local
deformation from

v|Mi =
∇

x̃
𝜙

i
ṽ‖‖‖‖∇x̃

𝜙
i
ṽ
‖‖‖‖
, ∀i = 1, … ,N. (24)

This can typically be used to compute splitting directions of PML systems of the form of (7). Operating in this fashion,
we encompass in the same framework curved and straight PML domains with an automatic and lightweight definition
of the local directions.

Low memory footprint, parallel operations on standard CPU, and automatic reconstruction of relevant modeling com-
ponents form the main benefits of our approach that enable us to address our primary goals (G1) and (G2). These
advantages can be significant especially for 3D configurations, but they require a “minimal” high-order hexahedral (or
quadrilateral) decomposition of Ω, which is known to be a major challenge in the field of computational geometry. How-
ever, since our goal is to achieve parametric studies, we do not intend to provide efficient numerical procedures for fully
generic configurations. In most of the practical cases, we restrict ourselves to parametric geometries that can be obtained
from case-dependent meshing procedures. Readers may refer to other works46,47,48,49 for some examples in the context of
UT modeling.
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4 COUPLING MACRO-ELEMENT FORMULATIONS USING
MORTAR ELEMENTS

One of the challenge of our approach is to enable the communication between neighboring subdomains. Upon the con-
form interface assumption stated in Section 3.3, the difficulty essentially lies in coupling different formulations within
the same framework. To address this issue, we rely on the mortar element method.50,51,52,53 This domain decomposition
method has been successfully used as a mean of incorporating different and independent space discretizations within a
global numerical scheme. A significant amount of research (see, for instance, other works32,33,34,54,55) has been dedicated
to the analysis and application of mortar elements for elastodynamics and wave propagation problems. In our work, we
use this method for our specific objectives, and we show how one can minimize its computational cost by employing a
lumping technique, as the one described in Section 2.2.2.

4.1 Schur complement
To start with, we recall the Schur complement method, which will be used to devise a global algorithm for coupling
macro-element formulations. We consider two vectors of unknown: −→X ∈ RN , referred to as the volume unknown, and−→L ∈ RM , referred to as the interface unknown. We assume that they satisfy the following linear system:(

D B

C⊺ D𝜀

)(−→X
−→L

)
=

(−→F
−→
G

)
, (25)

where −→F and
−→
G are given right-hand sides. The matrices D and D𝜀, of dimension N × N and M × M respectively, are

diagonal. The matrices B and C of dimension N × M may be referred to as transmission (from interface to volume)
matrices. The Schur complement method for solving this type of linear system reads:

Step 1. Preprocessing. We compute an auxiliary variable −→X∗ ∈ RN by (trivial) inversion of the volume matrix
−→X∗ = D

−1−→F . (26)
Step 2. Computation. Defining the Schur complement matrix

S
𝜀 = D

𝜀 − C
⊺
D

−1
B, (27)

and assuming that this matrix is invertible, we solve the following linear system
−→L = (S𝜀)−1

{−→
G −C

⊺−→X∗
}
. (28)

Step 3. Postprocessing. The volume unknown is obtained by
−→X = −→X∗ −D

−1
B
−→L .

Note that, in these three steps, the main issues are the invertibility of the Schur complement matrix S𝜀 in (27), and, if it
is invertible, the efficient computation of the interface unknown solution of (28).

4.2 Two-domain problems
To start with, we consider the case of two subdomains, ie, Ω = M1 ∪ M2, connected at an interface Γ satisfying the
conform interface assumption, detailed in Section 3.3. We denote by 𝜈 the normal vector field of the interface oriented from
M1 to M2.

4.2.1 The illustrative example of fluid-fluid coupling
We assume that both M1 and M2 support a fluid formulation (1), satisfied by the corresponding pressure fields p1 and
p2 with mass densities 𝜌1 and 𝜌2 and sound velocities c1 and c2. In this case, the mortar element method introduces a
Lagrange multiplier 𝜆 ∈ W = H− 1

2 (Γ), satisfying56

𝜕𝜆

𝜕t
= 1

𝜌1
∇xp1 · 𝜈 = 1

𝜌2
∇xp2 · 𝜈, (29)
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and weakly imposes the continuity condition on p1 and p2 at the interface. We define, for i = 1, 2, the space Vi = H1(Mi),
and the product space X = V1 × V2 × W. The weak formulation of the coupling scheme aims at finding the solution
(p1, p2, 𝜆) ∈ X for a time t > 0 such that, for any (p∗

1, p∗
2, 𝜆

∗) ∈ X , we have

⎧⎪⎪⎨⎪⎪⎩

d2

dt2 m1
(

p1, p∗
1
)
+ k1

(
p1, p∗

1
)
− d

dt
∫Γ𝜆p∗

1 dΓ = 0,
d2

dt2 m2
(

p2, p∗
2
)
+ k2

(
p2, p∗

2
)
+ d

dt
∫Γ𝜆p∗

2 dΓ = 0,
d
dt
∫Γ(p1 − p2)𝜆∗ dΓ + 𝜀

d2

dt2 ∫Γ𝜆𝜆∗ dΓ = 0.

(30)

In (30), we have assumed free-surface boundary conditions on the remaining faces of the macro-elements. In addition,
mi(·, ·) and ki(·, ·) are the bilinear forms defined as in (3), with corresponding material properties 𝜌i and ci. Note that,
in this formulation, we have introduced in the weak continuity constraint a penalization term proportional to a (small)
positive constant coefficient 𝜀 ≥ 0 and the second time-derivative of the Lagrange multiplier. This specific choice of the
penalization term is justified in Appendix A, where we consider the fully discrete energy norm of the coupling system.

We define Vh,i ⊂ Vi the finite element approximation spaces, detailed in Section 2.2.2, and we denote by {𝜑i,I}
Nh,i
I=1 the

associated basis functions. The approximation space of W is defined by taking the trace space of Vh,1 onto the interface,
namely,

Wh = Vh,1||Γ, Wh = span{𝜇I}
Mh
I=1, Mh = dim(Wh). (31)

As a consequence, there is a trivial mapping between the basis function of Wh and the basis functions of Vh,1. Upon the
conform interface assumption, this trivial mapping extends to basis functions of Vh,2, and using the “interface-to-volume”
mapping (21), we have

𝜇I = 𝜑1,1
Γ(I)
|||Γ = 𝜑2,2

Γ(I)
|||Γ, ∀I = 1, … ,Mh.

In the context of the mortar element method, our choice of discrete space for the Lagrange multipliers is nonstandard
and usually prohibited, since it may lead, in general configurations, to an unsatisfied discrete inf-sup condition.57,58 It is
for this particular reason that the penalization term was introduced in (30), in order to retrieve the stability of the discrete
coupling scheme.

Applying a second-order time-scheme, such as the one presented in (9), and a centered scheme for the coupling terms
lead to the following fully discrete coupling scheme

⎧⎪⎪⎨⎪⎪⎩

1
Δt2 M1

{−→P n+1
1 − 2−→P n

1 + −→P n−1
1

}
+K1

−→P n
1 − 1

2Δt
C1

{−→Λn+1 − −→Λn−1
}
= 0,

1
Δt2 M2

{−→P n+1
2 − 2−→P n

2 + −→P n−1
2

}
+K2

−→P n
2 + 1

2Δt
C2

{−→Λn+1 − −→Λn−1
}
= 0,

1
2Δt

C
⊺
1

{−→P n+1
1 − −→P n−1

1

}
− 1

2Δt
C

⊺
2

{−→P n+1
2 − −→P n−1

2

}
+ 𝜀

Δt2 MΓ

{−→Λn+1 − 2−→Λn + −→Λn−1
}
= 0.

(32)

In (32), Mi and Ki are the mass and stiffness matrices associated to each formulation, {−→P k
i }k≥0 are the finite element

unknowns expressed on each volume, and {−→Λk}k≥0 are the discrete Lagrange multipliers. The interface mass matrixMΓ ∈
Mh,Mh (R) is defined by

(MΓ)IJ = ∫Γ
𝜇I𝜇J dΓ, ∀I, J = 1, … ,Mh. (33)

From the choice of the discrete space for the Lagrange multipliers, we have

(MΓ)IJ = ∫Γ

(
𝜑1,1

Γ(I)
|||Γ)(𝜑1,1

Γ( J)
|||Γ) dΓ,

where 1
Γ(·) is the “interface-to-volume” index mapping defined in (21). Hence, applying the same consistent mass lump-

ing technique as for the volume mass matrix, presented in Section 2.2.2, we obtain a diagonal interface mass matrix. The
transmission matrices Ci ∈ Nh,i,Mh (R) are expressed as

(Ci)IJ = ∫Γ

(
𝜑i,I||Γ)𝜇J dΓ, ∀I = 1, … ,Nh,i, ∀J = 1, … ,Mh, (34)
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and, using the matrix representation of the “interface-to-volume” index mappings (22), can be expressed as

Ci = V
i
ΓMΓ. (35)

Remark 1. In Appendix A, we detail the arguments proving that, in order for the discrete system (32) to be stable, the
time step must respect the CFL condition

Δt ≤ min
⎧⎪⎨⎪⎩

2√
r
(
M−1

1 K1
) , 2√

r
(
M−1

2 K2
)
⎫⎪⎬⎪⎭ . (36)

In other words, the introduction of the Lagrange multipliers does not modify the stability condition on the time step
deriving from both subdomains, which is a major asset of this domain decomposition method.

The discrete scheme (32) can be expressed as

⎛⎜⎜⎜⎝
M1 −Δt

2
C1

M2
Δt
2
C2

Δt
2
C

⊺
1 −Δt

2
C

⊺
2 𝜀MΓ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
−→P n+1

1−→P n+1
2−→Λn+1

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
−→F n,n−1

1−→F n,n−1
2−→

Gn,n−1

⎞⎟⎟⎟⎠ , (37)

where the right-hand sides are

⎧⎪⎨⎪⎩
−→F n,n−1

i = −Δt2Ki
−→P n

i +Mi

{
2−→P n

i − −→P n−1
i

}
±Δt

2
Ci
−→Λn−1, ∀i = 1, 2,

−→
Gn,n−1 = Δt

2

{
C

⊺
1
−→P n−1

1 −C
⊺
2
−→P n−1

2

}
+ 𝜀MΓ

{
2−→Λn − −→Λn−1

}
.

(38)

System (37) is a specific case of system (25) with unknowns

−→X =

(−→P n+1
1−→P n+1
2

)
,

−→L = −→Λn+1,

and matrices

D =
(
M1

M2

)
, D

𝜀 = 𝜀MΓ, B = Δt
2

(
−C1
C2

)
, C = −B.

Hence, the Schur complement matrix reads

S
𝜀 = 𝜀MΓ +

Δt2

4
∑
i=1,2

C
⊺
i M

−1
i Ci. (39)

Since the interface mass matrix and the volume mass matrices are diagonal, using the decomposition (35) of the trans-
mission matrices, and remarking that (Vi

Γ)
⊺(Vi

Γ) is the identity matrix, one can verify that the Schur complement matrix
is diagonal

(S𝜀)II = 𝜀(MΓ)II +
Δt2

4
∑
i=1,2

(MΓ)2
II

(Mi) i
Γ(I) i

Γ(I)
, ∀I = 1, … ,Mh. (40)

This lumped Schur complement matrix is invertible for 𝜀 ≥ 0, and its memory footprint is very limited. Hence, the
coupling procedures represent little computational overheads.

4.2.2 The case of fluid-solid coupling
We now consider the case where M1 supports a fluid formulation (1) and M2 supports a solid formulation (4). We intro-
duce two Lagrange multipliers 𝜆v and 𝜆s used to solve the normal velocity constraint and the normal stress constraint,
respectively,

𝜆v = v1 · 𝜈 =
𝜕𝑦

2

𝜕t
· 𝜈, 𝜆s𝜈 = −p1𝜈 = 𝜎

2
· 𝜈,
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where v1 is the velocity associated to the fluid acoustic pressure in M1. The first relation can be written in terms of the
pressure unknown since

𝜕𝜆v

𝜕t
=

𝜕v1

𝜕t
· 𝜈 = − 1

𝜌1
∇xp1 · 𝜈.

Defining V1 = H1(M1), V2 = [H1(M2)]d, W = H− 1
2 (Γ) and the product space X = V1 × V2 × W × W, the weak

formulation of the coupling scheme, satisfied by the solution (p1, 𝑦2
, 𝜆v, 𝜆s) ∈ X for any (p∗

1, 𝑦
∗
2
, 𝜆∗v , 𝜆

∗
s ) ∈ X , reads

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d2

dt2 m1
(

p1, p∗
1
)
+ k1

(
p1, p∗

1
)
+ d

dt
∫Γ𝜆vp∗

1 dΓ = 0,
d2

dt2 m2

(
𝑦

2
, 𝑦∗

2

)
+ k2

(
𝑦

2
, 𝑦∗

2

)
+ ∫Γ𝜆s

(
𝑦∗

2
· 𝜈
)

dΓ = 0,

∫Γ
(
𝜆v −

𝜕𝑦
2

𝜕t
· 𝜈
)
𝜆∗v dΓ = 0,

∫Γ(𝜆s + p1)𝜆∗s dΓ = 0.

(41)

In (41), m2(·, ·) and k2(·, ·) are the bilinear forms defined in (6). Compared to (30), no penalization term is needed since the
normal velocity and normal stress weak continuity relations directly involve coercive terms w.r.t. the Lagrange multipliers.

We define the discrete space Wh as in (31). Using an order 2 centered time scheme for the complementary terms
appearing in (41), we obtain the following fully discrete scheme:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
Δt2 M1

{−→P n+1
1 − 2−→P n

1 + −→P n−1
1

}
+K1

−→P n
1 + 1

2Δt
C1

{−→Λn+1
v − −→Λn−1

v

}
= 0,

1
Δt2 M2

{−→Y n+1
2 − 2−→Y n

2 + −→Y n−1
2

}
+K2

−→Y n
2 + 1

2
C2,𝜈

{−→Λn+1
s + −→Λn

s

}
= 0,

1
2
MΓ

{−→Λn+1
v + −→Λn

v

}
− 1

2Δt
C

⊺
2,𝜈

{−→Y n+1
2 − −→Y n−1

2

}
= 0,

1
2
MΓ

{−→Λn+1
s + −→Λn

s

}
+ 1

2
C

⊺
1

{−→P n+1
1 + −→P n

1

}
= 0.

(42)

In (42), the matrices MΓ and C1 are defined in (33) and (34), respectively. The matrix C2,𝜈 ∈ Nh,2,Mh (R) is defined as

(C2,𝜈)IJ = ∫Γ

(
𝜑

2,I
· 𝜈
)
𝜇J dΓ, ∀I = 1, … ,Nh,2, ∀J = 1, … ,Mh,

where {𝜑
2,I
}Nh,2

I=1 are the (vectorial) basis functions generating Vh,2. Using similar energy arguments as in Appendix A, one
can prove that the CFL condition on the time step, for the discrete system (42) to be stable, is the lowest condition of the
two subdomains computed independently. The numerical scheme (42) is equivalent to

⎛⎜⎜⎜⎜⎝
M1

Δt
2
C1

M2
Δt2

2
C2,𝜈

− 1
Δt
C

⊺
2,𝜈 MΓ

C
⊺
1 MΓ

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

−→P n+1
1−→Y n+1
2−→Λn+1
v

−→Λn+1
s

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

−→F n,n−1
1−→F n,n−1
2−→

Gn,n−1
v
−→
Gn

s

⎞⎟⎟⎟⎟⎟⎠
, (43)

where the right-hand sides related to the volume unknowns are expressed as

⎧⎪⎨⎪⎩
−→F n,n−1

1 = −Δt2K1
−→P n

1 +M1

{
2−→P n

1 − −→P n−1
1

}
+ Δt

2
C1

−→Λn−1
v ,

−→F n,n−1
2 = −Δt2K2

−→Y n
2 +M2

{
2−→Y n

2 − −→Y n−1
2

}
− Δt2

2
C2,𝜈

−→Λn
s ,

while the right-hand sides associated to the discrete Lagrange multipliers are

⎧⎪⎨⎪⎩
−→
Gn,n−1

v = − 1
Δt
C

⊺
2,𝜈
−→Y n−1

2 −MΓ
−→Λn

v ,

−→
Gn

s = −C⊺
1
−→P n

1 −MΓ
−→Λn

s .
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System (43) is a specific case of system (25) with unknowns

−→X =

(−→P n+1
1−→Y n+1
2

)
,

−→L =

( −→Λn+1
v

−→Λn+1
s ,

)
.

The diagonal and extradiagonal block matrices are

D =
(
M1

M2

)
, D

𝜀 =
(
MΓ

MΓ

)
, B =

( Δt
2
C1

Δt2

2
C2,𝜈

)
, C =

(
C1

− 1
Δt
C2,𝜈

)
.

The Schur complement matrix S𝜀 of dimension 2Mh × 2Mh reads

S
𝜀 =

(
MΓ

Δt
2
C

⊺
2,𝜈M

−1
2 C2,𝜈

−Δt
2
C

⊺
1M

−1
1 C1 MΓ

)
.

By renumbering the unknown vector −→L in the following way

−→L =
((−→Λn+1

v

)
1
,
(−→Λn+1

s

)
1
, … ,

(−→Λn+1
v

)
Mh

,
(−→Λn+1

s

)
Mh

)⊺

,

and applying the same operation in the Schur complement matrix, we observe that S𝜀 is block diagonal with each block
defined as ⎛⎜⎜⎜⎝

(MΓ)II
Δt
2

(MΓ)2
II

(M2)2
Γ(I)2

Γ(I)

−Δt
2

(MΓ)2
II

(M1)1
Γ(I)1

Γ(I)
(MΓ)II

⎞⎟⎟⎟⎠I=1,… ,Mh

. (44)

Note that, to obtain (44), we used the fact that the interface mass matrix is diagonal and the expression (35) of the transmis-
sion matrices. The determinant of each block is strictly positive, thus the computation step (28) is well-posed. In practice,
we store the inverse of each 2 × 2 block in an initializing step, and we apply each inverse in parallel in order to solve (28)
at each time step, thus limiting the cost overhead of the coupling procedures.

4.2.3 Coupling with PML formulations
Coupling with PML formulations can be handled in the same way. To illustrate this case, we suppose that M1 holds
an acoustic formulation and M2 an acoustic PML formulation such as the one given in (7). We introduce the Lagrange
multiplier

𝜆 = v1 · 𝜈 = v2 · 𝜈.

The first relation can be expressed in terms of pressure variables as in Section 4.2.2. Assuming that

∃k ∈ {1, … , d} s.t. sk = 𝜈, (45)

where {si}
d
i=1 is the set of splitting directions in (7), then we can express the second relation in the equivalent form

𝜆 =
(

sk ⊗ sk

)
v2 · 𝜈.

Note that the assumption (45) is satisfied in most practical cases. Using the relevant Green formula in both systems, we
can introduce the Lagrange multiplier in both weak forms and retrieve the expression provided in the work of Demaldent
and Imperiale.39 After time and space discretization, we obtain the following Schur complement matrix

S
𝜀 = 𝜀MΓ +

Δt
2
C

⊺
1M

−1
1 C1 +

Δt
2 + 𝜏kΔt

C
⊺
2M

−1
2 C2,

where {𝜏i}d
i=1 are the (constant) absorption coefficients in each splitting direction. Readers can refer to the aforementioned

work39 for the details of the numerical scheme, not recalled here for the sake of conciseness. Note that, as for the previous
case (40), we obtain, in the conform case, a lumped Schur complement matrix.
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4.3 N-domain problems
So far, we have considered two-domain problems exclusively and we have shown how, by using the natural trace of the
volume discrete space, we can obtain lumped Schur complement matrices leading to very efficient coupling between sub-
domains. Traditionally, this specific choice of discrete space for the Lagrange multipliers is prohibited since it may entail
ill-posed Schur complement matrices, even in the conform case. To circumvent this difficulty, numerous possibilities of
adequate discrete spaces for the multipliers have been proposed (see, eg, other works33,34,51,52). In our work, we rely on
an alternate method based upon a penalization strategy, suggested in the work of Brezzi and Fortin.58 This enables us to
recover the invertibility of the Schur complement matrices, while keeping the computational performances of lumped
matrices.

4.3.1 Canonical example of an ill-posed lumped Schur complement matrix
To illustrate the loss of invertibility of the Schur complement matrix, we consider a canonical example of four subdomains
put together in a square-shape fashion, as depicted in Figure 2. In this example, the computational domain is composed
of four macro-elements {M1,M2,M3,M4} and four conform interfaces {Γa,Γb,Γc,Γd}. We denote by 𝛼 = {a, b, c, d} a
generic interface index and by i, j ∈ {1, 2, 3, 4} two subdomain indexes. To each interface Γ𝛼 , we associate a normal
vector field 𝜈

𝛼
, oriented as depicted in Figure 2. We assume that each subdomain bears an acoustic formulation with

identical mass densities and sound velocities. The Lagrange multiplier associated to each interface is defined as in (29).
Additionally, we assume that the macro-elements are of the same size and that their corresponding meshes have the same
number of elements and the same (isotropic) order of approximation. Similarly to (37), we can write in this context a
system of the form of (25). The volume and interfaces unknowns are

−→X =
(−→P n+1

1 …−→P n+1
4

)⊺
,

−→L =
(−→Λn+1

a …−→Λn+1
d

)⊺
.

The matrixD is the concatenation of four identical diagonal mass matricesM, andD𝜀 is the concatenation of four identical
interface penalization matrices 𝜀MΓ. We denote by Wh,𝛼 the discrete space for the Lagrange multipliers associated to the
interface Γ𝛼 , such that

Wh,𝛼 = span{𝜇𝛼,I}
Mh,𝛼
I=1 , Mh,𝛼 = dim(Wh,𝛼).

The transmission matrices are

B = Δt
2

⎛⎜⎜⎜⎝
−C1a C1d
C2a −C2b

C3b −C3c
C4c −C4d

⎞⎟⎟⎟⎠ , C = −B, (46)

where ∀i = 1, … , 4 and ∀𝛼 ∈ {a, b, c, d}

∀I = 1, … ,Nh,i, ∀J = 1, … ,Mh,𝛼 (Ci𝛼)IJ = ∫Γ𝛼

(𝜑i,I|Γ)𝜇𝛼,J dΓ.

FIGURE 2 Illustration of the canonical example including a cross-point at the intersection of four interfaces
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Note that, in (46), the sign of the block matrices can be directly deduced from the chosen orientation of the normal at
each interface. The Schur complement matrix appearing in the computation step (28) is symmetric and reads

S
𝜀 = D

𝜀 + Δt2

4

⎛⎜⎜⎜⎝
S12,a −C⊺

2aM
−1
2 C2b −C⊺

1aM
−1
1 C1d

· S23,b −C⊺
3bM

−1
3 C3c

· S34,c −C⊺
4cM

−1
4 C4d

· · S14,d

⎞⎟⎟⎟⎠ ,
where we denote by (·) the nonzero extradiagonal blocks deduced from symmetry and by S𝛼,i𝑗 the diagonal blocks such
that

Si𝑗,𝛼 = C
⊺
i𝛼M

−1
i Ci𝛼 +C

⊺
𝑗𝛼
M

−1
𝑗 C𝑗𝛼, ∀i = 1, … , 4, ∀𝛼 ∈ {a, b, c, d}. (47)

For a fixed i = 1, … , 4 and (𝛼, 𝛽) ∈ {a, b, c, d}2 such that 𝛼 ≠ 𝛽, blocks of the formC
⊺
i𝛼M

−1
i Ci𝛽 represent the interactions

between the Lagrange multipliers associated to the interfaces Γ𝛼 and Γ𝛽 through the macro-element Mi. Hence, from the
decomposition (35), one can see that these extradiagonal blocks have only one nonzero value at the cross-point. Assuming
an identical numbering of the interfaces going from the cross-point to the free extremity, we denote by

I×𝛼 = 1, I◦𝛼 = ⟦2;Mh,𝛼⟧, ∀𝛼 ∈ {a, b, c, d}

the index of the node concerned with the cross-point and the rest of interface indexes in Γ𝛼 , respectively. Following this
notation, we propose the renumbering of the interface unknown

−→L =
({−→L×

𝛼

}d

𝛼=a

{−→L◦
𝛼

}d

𝛼=a

)⊺

, (48)

so that the Schur complement matrix takes the form of

S
𝜀 = D

𝜀 + Δt2

4

⎛⎜⎜⎜⎜⎝
S×

(S12,a)|I◦a
(S23,b)|I◦b

(S34,c)|I◦c
(S14,d)|I◦d

⎞⎟⎟⎟⎟⎠
,

where S× is the 4 × 4 cross-point matrix expressed as

S
× =

⎛⎜⎜⎜⎜⎜⎜⎝

(S12,a)|I×a −
(
C

⊺
2aM

−1
2 C2b

)|||I×a I×b
−
(
C

⊺
1aM

−1
1 C1d

)|||I×a I×d
· (S23,b)|I×b −

(
C

⊺
3bM

−1
3 C3c

)|||I×b I×c
· (S34,c)|I×c −

(
C

⊺
4cM

−1
4 C4d

)|||I×c I×d
· · (S14,d)|I×d

⎞⎟⎟⎟⎟⎟⎟⎠
. (49)

The expression of each extradiagonal value of this cross-point matrix is

(
C

⊺
i𝛼M

−1
i Ci𝛽

)|||I×
𝛼

I×
𝛽

=

(
MΓ𝛼

)
I×
𝛼

I×
𝛼

(
MΓ𝛽

)
I×
𝛽

I×
𝛽

(Mi) i
Γ(I×

𝛼 ) i
Γ(I×

𝛼 )
, ∀i = 1, … , 4, ∀(𝛼, 𝛽) ∈ {a, b, c, d}2, 𝛼 ≠ 𝛽.

In the specific case of our canonical example, the mass and interface mass matrices are identical. We denote by m× and m×
Γ

their corresponding values at the cross-point index. After factorization, the cross-point matrix takes the simpler form of

S
× =

(
m×

Γ
)2

m×

⎛⎜⎜⎜⎝
2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2

⎞⎟⎟⎟⎠
and has a nonempty kernel generated by the constant vectors

Ker(S×) = span {(1 1 1 1)⊺} . (50)

Thus, we can see the necessity of the penalization strategy since the Schur complement matrix S𝜀 is ill-posed for 𝜀 = 0.
It should be noted that the simple form (50) of the kernel of the cross-point matrix is linked to the specific parameters of
our canonical configuration. In more generic cases, we expect this kernel to vary depending on the discretization patterns
and the material properties of the macro-elements.
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4.3.2 Schur complement matrix for N-domain problems
We consider a specific data structure, referred to as the “skeleton” of the macromesh, regrouping the information of the
incident faces (or edges) at every cross points, and the incident macro-elements at every interfaces. Using this “skele-
ton,” we can assemble the set of cross-point matrices, denoted by {S×

r }
N×
r=1, where N× is the number of cross-points in

the macromesh. If d = 2, the cross-points are restricted to points with multiple incident edges, while, if d = 3, the
cross-points are spread across edges with multiple incident faces. The form of the cross-point matrices is similar to (49)
with dimensions equal to the number of incident faces (or edges). We also assemble the Schur complement matrices set
on the interior nodes. Let  be the set of interface indexes, such that for any 𝛼 ∈ , the interface Γ𝛼 is shared by two
macro-elements Mi(𝛼) and Mj(𝛼). These interior Schur complement matrices are denoted by {S◦

i(𝛼)𝑗(𝛼),𝛼}𝛼∈, with expres-
sions deduced from (47). Finally, generalizing the previous renumbering (48), we can express the Schur complement
matrix for N-domain problems in the general form of

S
𝜀 =

({
S
×
r
}N×

r=1 {
S◦

i(𝛼)𝑗(𝛼),𝛼

}
𝛼∈

)
.

In practice, the interior Schur matrices are diagonal and every cross-point matrices are independent matrices of reasonable
size so that we can compute and store their inverse in an initializing step. Applying their inverse at every time steps is
performed in parallel, leading to a limited cost overhead.

Remark 2. The penalization procedure is a compromise between stability and consistency. In order to limit spurious
consistency errors, we set 𝜀 = (Δt3) which is below the consistency errors of the numerical time schemes used for
the time-discretization of the various formulations. Additionally, since only the cross-point matrices are ill-posed, we
use an “inhomogeneous” penalization parameter set to zero at the interior nodes of the interfaces.

5 NUMERICAL SIMULATION OF IMMERSED CURVED CFRP IN 3D

As a numerical illustration, we propose to model the UT of a 4 mm thick immersed laminate composite material. The
specimen is composed of 16 isotropic transverse plies of 235 𝜇m thickness. The anisotropy direction of the plies, repre-
senting the fiber orientation, changes from 𝑓

0
= (1 0 0)⊺ to 𝑓

90
= (0 1 0)⊺ successively from one ply to another. Between

each ply and on the top face of the structure, we consider thin intermediate epoxy layers of 15 𝜇m represented as isotropic
materials. Overall, the stratification is made of 32 layers. Using Voigt notation to represent the constitutive law ∗ in (5),
the material properties associated to each ply and epoxy layers are presented in Table 1. The surrounding fluid is water
with a mass density of 𝜌w = 1.0 g · cm−3 and a sound velocity of cw = 1.483 mm·𝜇s−1.

We assume that the structure is subject to a cylindrical deformation with respect to the y-axis with a curvature center
positioned at 10 mm below the specimen. We consider an incident pressure field pinc as a plane wave with a spatial
Gaussian window

pinc (x, t
)
= 𝑓

((
x − x0

)
· d

cw
+ t

)
exp

⎛⎜⎜⎜⎝−
‖‖‖x − x0

‖‖‖2

𝜎G

⎞⎟⎟⎟⎠ , (51)

where x0 = (0 0 3)⊺ is the incident wave origin, d = (0 0 −1)⊺ is the direction of the propagation, the standard deviation
of the Gaussian window is set to 𝜎G = 1.0, and we define the excitation signal

𝑓 (t) = cos (2𝜋F(t − t0)) exp
(
−𝜋 (t − t0)

𝜎𝑓

)
,

with F = 3 MHz, t0 = 0.75 𝜇s, and 𝜎f = 0.2. In the following subsections, we use our numerical model to compute the
total field, ie, the sum of the incident field and its interactions with the stratified specimen. Due to the localized spatial

TABLE 1 Material properties of the ply and epoxy layers

Density (g · cm−𝟑) Constitutive Law Coefficients (GPa)
C11 C22 C33 C12 C13 C23 C44 C55 C66

Ply 1.6 143.2 15.8 15.8 7.5 7.5 8.2 3.8 7 7
Epoxy 1.23 7.6 7.6 7.6 4.4 4.4 4.4 1.6 1.6 1.6
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FIGURE 3 Numerical domain for the healthy immersed curved Carbon Fiber Reinforced Polymer. PML, perfectly matched absorbing layer

support of the incident field, we truncate the numerical domain in the tangent plane of the specimen so that its lengths
are reduced to 6 mm in both directions. To avoid spurious reflections, we surround the solid area with 1-mm solid PMLs.
Above and below, we append two 1-mm fluid subdomains surrounded with additional 1-mm thick fluid PMLs. To sum
up, prior to its cylindrical deformation, the overall numerical domain has a size of 8 × 8 × 8 mm3, and the disposition of
the various formulations is depicted in Figure 3. The incident field is evaluated at the upper interface between fluid and
fluid PML subdomains.

Remark 3. In Appendix B, we show how the transmission conditions are adequately taken into account in the mortar
element method. As a result, above the entry surface in the fluid PMLs, we solve the field equations for the diffracted
field and below for the total field. In practice, this enables us to restrict the surrounding fluid subdomains to a limited
size while avoiding spurious interferences between the incident and total fields.

5.1 Simulation in the case of a healthy curved CFRP
To start with, we consider the case of a healthy specimen without internal flaw, as presented in Figure 3, for which we
have a total of 45 macro-elements. Note that, due to the cylindrical transformation, the constitutive law varies locally
and is expressed as in (5). In this case, the local fiber orientation of each ply is computed using (24), with ṽ being either
𝑓

0
or 𝑓

90
.

In this configuration, the smallest wavelength is the one related to the fluid material, which is about 0.5 mm. Hence, in
the tangent plane, we perform a subdiscretization of each macro-element so that we can insure two elements of order 4
per wavelength. In the thickness of the solid material, since the size of each layer is smaller than half of the wavelength,
we use a specific discretization pattern and use one element of order 3 for the each ply and one element of order 2 for each
epoxy layer. Note here the benefits of the anisotropic orders in the finite element discretization, depicted in Section 2.2.

In Table 2, we gather the various characteristics of the simulation. We differentiate the number of nodes in the final
(subdiscretized) finite element space from the number of degrees of freedom (DoFs). The latter is obtained by taking
into account the dimension of the unknown at each node, which is 1 for fluid, 3 for solid, 6 for fluid PML, and 18 for
solid PML subdomains. It is important to emphasize that, even though we are facing a reasonably large number of DoFs
within a locally varying anisotropic context, the memory footprint of the overall numerical scheme is quite low (less than
1 GB). Additionally, for reaching the maximal time corresponding to the propagation of the ultrasonic beam through
the structure, the computational time is about 10 minutes. The simulation was carried out on a biprocessor computer
Intel® Xeon® Processor E5-2687W v2, 2 × 8 cores at 3.40 GHz. For a more detailed examination of the performances of the
proposed numerical solver, including a comparison with a commercial finite element software, readers may refer to the
dedicated communication.59
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TABLE 2 Characteristics of the simulation in the case of a healthy curved stratified specimen
No. of Subdomains No. of Nodes No. of DoFs

Fluid Fluid PML Solid Solid PML Fluid Fluid PML Solid Solid PML

2 34 1 8 580 K 1665 K 1120 K 1045 K 32.7 M
Max. Time (𝝁s) Time Step (𝝁s) No. of Steps Mem. Load (bytes) CPU Time (min)

5.5 1.85 · 10−3 2973 790 MB 10.53

Abbreviations: DoF, degree of freedom; PML, perfectly matched absorbing layer.

FIGURE 4 Snapshots of the absolute value of the pressure field in the fluid and fluid perfectly matched absorbing layer (PML)
subdomains and the norm of the displacement in the solid and solid PML subdomains. The snapshot times are
{t1, t2, t3, t4, t5} = {1.11, 1.66, 2.22, 2.77, 3.14} 𝜇s. For illustration purposes, the pressure field is scaled up by 10%.

We present in Figure 4 the snapshots of the solution at various time steps. In these snapshots, we observe the propagation
of the primary ultrasonic beam influenced by the anisotropy of the structure and the generation of structural noise coming
from the multiple reflections at the layer interfaces. Additionally, we consider an observation point P = (0, 0, 2.95)⊺ located
above the structure, and an observation point Q = (0, 0,−2.95)⊺ located below the structure (see Figure 3). We plot the
pressure field obtained at the observation point P in Figure 5A. We see three main contributions: (P.I) is the incident field
defined in (51); (P.II) is the reflection of the incident field at the structure's upper boundary; (P.III) is the backwall echo.
The signal between (P.II) and (P.III) is the phenomena referred to as the structural noise. In Figure 5B, we plot the signal
at point Q and we observe a main contribution (Q.I), which is the transmitted wave that traveled through the complete
structure.

5.2 Illustration of a variation of the configuration with a circular delamination flaw
Starting from the configuration described in the previous section, we introduce a circular delamination flaw located at
the center of the structure. We add the necessary macro-elements so that the flaw geometry corresponds to an interface
between two macro-elements. Between these two MEs, we discard the mortar element coupling scheme in order to incor-
porate the effect of the flaw in the numerical scheme, which is equivalent to duplicate and detach interfacial nodes. We
show this configuration in Figure 6. In this more intricate case, the local anisotropy orientation of each ply is computed
using (23), with v∗ being either 𝑓

0
or 𝑓

90
.

In Table 3, we regroup the characteristics of the simulations performed as a toy example of parametric variation on
the radius of the circular flaw r ∈ {0.5, 0.75, 1.00, 1.25, 1.50, 1.75} mm. For this configuration, we have 34 fluid, 98 fluid
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(A) (B)

FIGURE 5 Fluid pressure at two observation points above and below the immersed curved stratified material. A, Fluid pressure at point
P = (0, 0, 2.95); B, Fluid pressure at point Q = (0, 0, −2.95)

FIGURE 6 Representation of the numerical domain for the immersed curved Carbon Fiber Reinforced Polymer with internal circular
delamination of radius r = 0.75fflmm. PML, perfectly matched absorbing layer

PML, 34 solid, and 32 solid PML subdomains. Depending on the radius, we adapt the geometries of the macro-elements;
hence, the number of nodes varies from one simulation to another. It should be noticed that, due to the inclusion of the
flaw geometry and the conformity constraints that need to be satisfied, the final mesh incorporates elements of different
sizes. As a consequence, the time step has decreased compared to the healthy case, and the overall computation time has
increased in order to reach an identical maximal time of 5.5 𝜇s.

We present in Figure 7 the snapshots of the solution at the same time steps than in Figure 4. For this configuration, we
have fixed the radius of the circular delamination flaw to r = 0.75 mm. We observe the diffracted wave due to the presence
of the flaw. This contribution is clearly seen in Figures 8A and 8B where we plot the pressure field at two observations
points above and below the flawed structure. The contributions (P.I), (P.II), and (P.IV) are identical to the healthy case,
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TABLE 3 Characteristics of the simulations during the variation of the radius of the
circular delamination flaw

r (mm) No. of Nodes No. of DoFs
Fluid Fluid PML Solid Solid PML

0.50 873 K 2034 K 1704 K 1133 K 38.5 M
0.75 873 K 2034 K 1704 K 1133 K 38.5 M
1.00 1292 K 2439 K 2523 K 1119 K 43.6 M
1.25 1388 K 2549 K 2711 K 1133 K 45.2 M
1.50 1515 K 2662 K 2957 K 1119 K 46.5 M
1.75 1692 K 2853 K 3304 K 1133 K 49.1 M
r (mm) Time Step (𝝁s) No. of Steps Mem. Load CPU Time (min)
0.50 4.57 · 10−4 12 032 1001 MB 47
0.75 4.45 · 10−4 11 963 1017 MB 48
1.00 4.78 · 10−4 11 503 1214 MB 60
1.25 6.32 · 10−4 8698 1266 MB 48
1.50 4.99 · 10−4 11 021 1321 MB 65
1.75 6.64 · 10−4 8272 1410 MB 52

Abbreviations: DoF, degree of freedom; PML, perfectly matched absorbing layer.

FIGURE 7 Snapshots of the solution in the presence of a circular delamination flaw with radius r = 0.75 mm. The snapshot times are
{t1, t2, t3, t4, t5} = {1.11, 1.66, 2.22, 2.77, 3.14} 𝜇s. For illustration purposes, the pressure field is scaled up by 10%.

and the contribution of the flaw is clearly identified in (P.III) and (Q.II). The backwall echo amplitude (P.IV) is lower than
in the healthy case due to its interaction with a second transverse (and slower) flaw contribution.

In Figures 9A and 9B, we plot the pressure at the same observation points for different values of the delamination radius
r ∈ {0.5, 0.75, 1.00, 1.25} mm. For readability, we restrict the plotting time window to the flaw responses exclusively. We
observe that, as the flaw size increases, the primary contribution of the transmitted wave (P.III) increases and the primary
contribution in the reflected wave (Q.I) decreases. Due to its interaction with the backwall echo, the contribution (P.IV)
does not strictly follow this tendency and it appears that the secondary transmitted wave is only slightly modified by the
variation of the flaw.

Remark 4. The approach used in this section can be extended to a class of hybrid methods. The incident field proposed
in (51) can be computed using a potentially more sophisticated model, eg, a ray-based asymptotic model. In a UT
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(A) (B)

FIGURE 8 Fluid pressure at two observation points above and below the immersed curved stratified material with internal circular
delamination of radius r = 0.75fflmm. A, Fluid pressure at point P = (0, 0, 2.95); B, Fluid pressure at point Q = (0, 0, −2.95)

(A) (B)

FIGURE 9 Variation of the fluid pressure at two observation points above and below the immersed curved stratified material depending
on the radius of the internal circular delamination. A, Fluid pressure at point P = (0, 0, 2.95); B, Fluid pressure at point Q = (0, 0, −2.95)

context, this strategy can be used to represent the propagation of the incident field, without having to incorporate the
complete propagation area in the numerical domain. When modeling realistic UT configurations, it is also required
of the forward solver to represent the electrical signal VR captured by the receiving piezoelectric transducer. In this
context, the pioneer works1,2,60,61 express the received electrical signal as a function of the so-called reciprocity quantity
 , namely,

VR(t) =  ⋆ (t), ∀t ∈ [0,T],
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where T is the maximal time, · ⋆ · is the convolution in time domain, and  is a convolution kernel representing the
sensitivity of the transducer acquisition chain. The reciprocity quantity  reads

 = ∫Γ
ptot, E ⋆

(
∇pinc, R · n

)
− pinc, R ⋆

(
∇ptot, E · n

)
dΓ,

where ptot, E is the total pressure field computed from the incident field generated by the emitting transducer, and
pinc, R is a “virtually emitted” field from the receiving transducer. Note that Γ is a boundary surrounding the struc-
ture, or the flaw, and in the context of UT of composite materials, we generally choose the entry surface. In practice,
the numerical solver is used to compute the quantity ptot, E, as presented in the numerical examples of this section.
Hence, by appending the computation of the reciprocity signal to the finite element computations, our approach is
compatible with this type of hybrid methods. For more details and illustrations of numerical results obtained using
the development version of the CIVA software,12 readers may refer to prior communications.46,47,49,62

6 CONCLUSION AND PERSPECTIVES

In this work, we have proposed a specific numerical solver for wave propagation modeling designed for UT configura-
tions and particularly suited for stratified composite materials. Our approach is focused on addressing, in an efficient and
robust manner, parametric variations of the configuration, a fundamental prerequisite for inversion loops or sensibility
studies. To reach this objective, we have detailed a macro-element strategy which is based upon a decomposition of the
configuration of interest. Each subdomain, or macro-element, in this decomposition is associated to a specific wave prop-
agation formulation, from which we derive a discrete propagator using the spectral finite element method. Making the
most of the a priori information embedded in the scene decomposition, we are able to improve the performances of the
standard finite element operations in terms of memory footprint and computational load. Additionally, we have shown
how we can extract from the macro-elements' deformations important modeling components such as the anisotropy ori-
entations or the splitting directions of PMLs, altogether in a lightweight and efficient fashion. The transmission conditions
between each subdomain are solved using the mortar element method, which is sufficiently flexible to take into account,
in the same formalism, the various set of formulations arising in numerical UT modeling. In particular, we have depicted
how, using the traces of the volume finite element spaces and a penalization strategy, one can apply a lumping integra-
tion technique on the Schur complement matrices in order to significantly reduce the cost of the coupling method, in the
case of conform interfaces. To illustrate the efficiency of this approach, we have proposed a 3D configuration of a curved
composite materials, flawed with an internal circular delamination of varying radius.

A first and important perspective of this work would be to incorporate, within the macro-element strategy, the case of
nonconform interfaces. Indeed, in numerous UT configurations, the wavelength ratio may vary strongly between differ-
ent inclusions of materials. A typical example being the case of immersed specimen, as the one proposed in the numerical
experiments of this communication. In these configurations, using the ability of the mortar element method to deal with
independent subdomain discretizations, we could significantly improve the efficiency of the global numerical scheme.
However, the main issue, in this context, is to solve the interface linear system, which cannot be lumped, in an efficient
manner. A potential lead to address this difficulty could be to rely on the conformity of the macromesh and to only con-
sider “controlled” nonconformities, where we have an a priori assumption on the refinement ratio between two adjacent
discretizations. In addition to spatial nonconformities, we could also consider the class of methods that allows to include,
within the same numerical scheme, different time discretizations. We can mention, for instance, the local time-stepping
method63 or the locally implicit method.64 Another possible way to improve the range of configurations efficiently han-
dled by our approach could be to use the mortar element method to “implicitly” incorporate thin layers of materials, such
as the epoxy layers in the presented numerical illustrations. We could, for instance, consider the standard spring-mass
model65 or a more complex asymptotic propagator associated to the thin layer, such as the one proposed in the work of
Bonnet et al.66
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APPENDIX A

STABILITY OF A DISCRETE COUPLED SYSTEM

A.1 Discrete energy norm of second-order schemes
To start with, we recall a standard stability result (see the work of Joly40 for more details). Considering the second-order
fully discrete scheme (9), one can verify that the functional

En+ 1
2 = 1

2

{−→P n+1 − −→P n

Δt

}⊺

M

{−→P n+1 − −→P n

Δt

}
+ 1

2
−→P n+1

K
−→P n (A1)

satisfies a specific conservation property. Indeed, multiplying (9) by 1
2Δt

{−→P n+1 − −→P n−1}, we obtain

1
Δt

{
En+ 1

2 − En− 1
2

}
= 0.

To turn this conservation property into a stability result, we need to prove that the functional is positive for any solution
vector. While it is self-evident for the first term in (A1), the second one needs some further manipulations. Remarking that

−→P n+1
K
−→P n =
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K
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}
leads to the expression
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Hence, upon the CFL condition (10), the functional is positive and represents a discrete energy norm.

A.2 Stability of the fluid-fluid coupling system

We consider the case of system (32). For i = 1, 2, let {E
k+ 1

2
i }k≥0 be the discrete energy norm of both subdomains, defined

as in (A1). Multiplying each volume relation in (32) by 1
2Δt

{−→P n+1
i − −→P n−1

i } and summing both equations yield
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Using the discrete form of the continuity relation in (32), we obtain∑
i=1,2
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Introducing the positive functional

E
n+ 1

2
Γ = 1

2
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we finally get the following conservation property for the coupling system (32):∑
i=1,2

1
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n− 1

2
i

}
+ 𝜀

Δt
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2
Γ

}
= 0. (A2)

Therefore, assuming that the time step satisfies the inequality (36), we can interpret the relation (A2) as a stability result,
valid for any 𝜀 ≥ 0.

APPENDIX B

DIFFRACTED FIELD—TOTAL FIELD COUPLING SYSTEM

In some cases, it is important to be able to introduce in the numerical domain an externally computed incident field. As
detailed in Remark 4, a typical example is the case of hybrid coupling, where the global incident field pinc is computed
using a ray-based asymptotic model, and the total field is obtained in a specific area using a numerical solver. In practice,
the mortar element method provides us with a convenient way to solve this transmission problem. To give an illustration,
let us consider a two-domain acoustic problem such as the one presented in Section 4.2.1. For simplicity, we assume that
𝜌1 = 𝜌2 = 𝜌 and c1 = c2 = c. The second domain bears a total field formulation, the incident field is introduced at
the interface between the two subdomains, and the first domain is written in terms of diffracted field. The main step is to
write the relations (29) in terms of total fluxes

𝜕𝜆

𝜕t
= 1

𝜌
∇xpdiff

1 · 𝜈 + 𝜏 inc = 1
𝜌2

∇xptot
2 · 𝜈, with 𝜏 inc = 1

𝜌
∇xpinc · 𝜈

and the weak continuity relation in (30) in terms of total traces

d
dt∫Γ

(
pdiff

1 − ptot
2
)
𝜆∗dΓ + 𝜀

d2

dt2 ∫Γ
𝜆𝜆∗dΓ = − d

dt∫Γ
pinc𝜆∗dΓ.

Hence, provided that the outside model is able to compute the input data (pinc, 𝜏 inc), we can incorporate them adequately
as right-hand sides in the coupled system (30).
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