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Abstract 

 

As in any other measurement process, Non-Destructive Evaluation (NDE) is subject to 

variability whose impact can be assessed to guarantee a given level of performance. Once 

NDE prevents catastrophic failures, deaths and environmental damage, identifying 

uncertainties and variability in NDE help to design more reliable inspections, therefore is 

a process that saves lives. This is the goal of a reliability study. Statistical indicators such 

as Probability of Detection (POD) curves give insights to allow building of mechanical 

designs with enough « secure margin » for structural integrity and to also define 

appropriate maintenance & inspection cycles. Simulation is very useful to support 

performance or reliability demonstrations that require a lot of data (such as POD studies 

and qualification campaigns), and where simulation can help by reducing the number of 

necessary mock-ups and experimental trials. In addition to physical models, the NDE 

simulation software CIVA now offers metamodelling techniques. Built from an initial set 

of physical simulations, such surrogate models give the user the possibility to generate a 

massive amount of data while combining and exploring multi parametric variations. This 

is particularly efficient in the context of reliability studies, when the best settings, track 

the worst-case scenario must be found or build POD curves. This paper illustrates the use 

of this metamodelling approach for the reliability study of a longitudinal weld AUT 

(automated ultrasonic testing) inspection. Real pipe mill inspection data are provided and 

compared to modelling and metamodelling results. 
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1.  Introduction 
 

In the context of NDE reliability studies, extensive parametric analyses are required to 

identify essential parameters that can affect the NDE performance. Such studies need a 

large amount of data which is often difficult and costly to obtain with a set of purely 

experimental results. Probability Of Detection methods, that links the probability to detect 

a detrimental flaw to its size, is one indicator used for NDE reliability evaluation 

including its quantification. The statistical validity of this approach is also dependent on 

a sufficient amount of data. Numerical simulation tools can be particularly useful at that 

stage thanks to their ability to generate large data sets at a relative low cost. It can also 

help to explore deeper and more precisely some parameters’ variability that can be 

difficult to monitor in an experimental Design Of Experiment (DOE). In addition to 

classical “numerical” simulations, “Metamodels” are now available, which drastically 

increase the capacity to generate even larger sample sizes. For parametric and sensitivity 

analyses, or Model Assisted POD studies, such tools give access to results (such as Sobol 

Indices, beam of POD curves, non-parametric POD curves) that simply cannot be reached 

with experimental studies. This paper illustrates the use of this metamodelling approach 

for the reliability study of a longitudinal weld Automated Ultrasonic Testing (AUT) 

inspection. Real pipe mill inspection data are provided and compared to modelling results. 

 

2.  Modelling software for NDT 
 

2.1 Overview of available models in CIVA platform 

 

The CIVA platform is a well-established multi technique simulation and analysis 

software in NDT [1]. Its various modules give access to different NDT methods and 

techniques: Ultrasonic Testing (UT), Guided Waves Testing (GWT), Eddy Current 

Testing (ET), Radiographic Testing (RT) & Computed Tomography (CT), 

Thermographic Testing (TT) and is extended by Structural Health Monitoring 

applications based on guided ultrasonic waves. 

The mathematical formulations used in the different modules often rely on semi-

analytical models. This approach allows for solving a large range of applications while 

offering very competitive calculation times compared with purely numerical methods 

(FEA, etc.). For instance, most of the modelling configurations available in the UT 

module will rely on a geometrical ray approach to compute beam propagation (the so-

called “pencil method”). The interaction with discontinuities involves several models 

depending on the context, some of them rely on semi-analytical or analytical 

formulations, the “Kirchhoff” or “GTD” (which stands for “Geometrical Theory of 

Diffraction”) models can be mentioned but other ones have also been implemented to 

cover several configurations [2]. The current trend is to implement hybrid approaches 

where semi-analytical methods are used in conjunction with a transient Finite Element 

Method (FEM) [3]. 

 

2.2 About validation 

 

To be effectively used as a source of quantitative justification for NDE reliability, one 

prerequisite is to rely on sound validation evidence. Models’ validations in CIVA take 

place at different stages. Validation works are usually performed to establish the field of 
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validity of a new feature or model (comparison with experiments, with other models 

available in the platform, with literature, etc.). The development team also participated to 

the international UT and ET modelling benchmarks proposed annually for more than 10 

years by the World Federation of NDE centres and published in the QNDE conference, 

which aimed at comparing different simulation codes to experimental data provided to all 

participants (see http://wfndec.org). Because validations are performed all along the 

development of new models or really targeted to an application, and as a lot of cases 

cannot be published, it is difficult to capitalize all these sets of works in an organized way 

clearly presented to the user. That is why a specific effort has been put on validation to 

provide evidence of the modelling results’ validity in various situations, or to show the 

limits of semi-analytical models. These validation campaigns, funded by EXTENDE, 

have been performed during several years after 2010 and have been published on the 

EXTENDE website, an overview of these validation campaigns is provided in [4].  

However, it is not possible to validate all potential configurations and therefore, it is 

advised to include as much as possible some relevant reference experimental 

measurements to evaluate models’ accuracy in the frame of any reliability study. 

 

2.3 Metamodeling approach in a few words 

 

A metamodel is a surrogate model relying on “smart interpolators” and is built to replace 

a physical-based model. The first step consists in computing a data base of simulation 

results for a given range of a parameter variation. The metamodel is built from these 

reference data and, after having evaluated its accuracy, it enables a real-time exploration 

of the full range of inspection scenarios constituted by parameter variations. It becomes 

possible to achieve statistical analysis on data such as sensitivity and POD studies. For 

instance, Sobol indices can be computed from metamodel output to quantify the relative 

importance of influential parameters.  

Various DOE methods can be selected to build the simulation data base used to initiate 

the metamodel. This can be a Full Factorial design (range of variation and number of 

values for each parameter explicitly defined); however, other drawing schemes such as 

Latin Hypercube Sampling “LHS” (which generates pseudo random sequences of 

parameters value, widely used to construct computer experiments), generally reaches a 

better metamodel accuracy with a much smaller number of computations. Also, several 

interpolators can be applied to build the metamodel from the database (Multilinear, Radial 

Basis function, Kriging, etc.). Interested readers can refer to the following paper for more 

detailed information on the metamodels currently implemented in the CIVA software [5].  

 

3.  Pipeline longitudinal weld inspection and model 
 

3.1 Test piece and inspection system 

 

The experimental inspection results considered for this paper are issued from the LNDC 

(Laboratory of Non-Destructive Testing, Corrosion and Welding) that is part of the 

Metallurgical and Material Engineering Department of the Federal University of Rio de 

Janeiro [6]. The test piece is a 12 m long pipeline portion made of X-65 alloy with a 

longitudinal weld performed by SAW technique (Submerged arc welding). A total of 99 

artificial defects had been inserted in the weld area, varying in types, dimensions, 

positions and orientations. The table 1 lists the different flaws. The pipe has an 18’’ outer 

http://wfndec.org/
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diameter, 28 mm wall thickness and density of 7.8 g/cm3. Sound velocity of X-65 steel 

for transverse waves was considered to be 3230 m/s. The weld exhibits a X-bevel profile 

with a main bevel angle of 95°. 

 
Table 1. List of defects inserted in the pipe used in experimental AUT inspection. 

  Sizes of Defects 

Types of Defects 
Number of 

Defects 
Heights Lengths Depths 

Lack Of Fusion  9 

0.35-2.10 1.5-12.0 0.5 - 24 

Lack Of 

Penetration 
14 

Cracks on HAZ 20 

Transverse cracks 

Type A 
12 

Transverse cracks 

Type B 
24 

Transverse cracks 

Longitudinal 

cracks 

20 

 

The Automated UT (AUT) inspection system relies on a set of different mono-element 

ultrasonic probes combined to form a multi-channel tool, each channel having the role to 

inspect one zone in and around the weld area, as shown in Figure 1. Each channels pair 

has its own distance to the weld line and its own refraction angle. Once set around the 

weld, a mechanized scanner allows to cover the full length of the test piece. 

 
Figure 1. Overview of the different channels of the AUT inspection system  

 

3.2 Building the nominal model 

 

Before launching an extensive sensitivity or POD simulation study, the inspection 

“nominal” model shall be defined in the software. The Figure 2 illustrates the test piece 

(pipe, weld and Heat Affected Zones) and the L7 inspection channel set up in the CIVA 

software. The weld and HAZ is assumed homogeneous in this case, with the same 

acoustic properties as the pipe base material. This channel involves a 4 MHz conventional 

transducer mounted on a Plexiglas wedge with a wedge angle of about 46° that generates 

a 60° shear waves in steel. The index point is located at 60 mm from the weld center line 

such that this channel covers the lower volume of the weld and detects flaws in this area 

such as longitudinal cracks. The beam generated by the sensor is illustrated in the figure 

below and the coloured chart shows that a reasonable energy reaches a large part of the 
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targeted zone. It can be seen that such information could be really useful to optimize 

transducer design, choice, or its location, in order to reach a certain beam, spread and 

angle in the target area. 

 

 
Figure 2. Model of the AUT system (L7 channel) in CIVA user interface and UT field (above-12dB) 

 

Following the same process as real trials, the calibration reflector response shall also be 

simulated to adjust sensitivity levels to a normalized amplitude to establish decision 

thresholds in the model. Here, the reflector used for calibration are Through Drilled Holes 

(TDH) of 1.6 mm diameter. For this channel L7, a TDH located at the centre of the weld 

is used. Figure 3 illustrates the TDH response signal obtained by simulation. Then, the 

target flaw will be inserted, modelled here, by a rectangular planar flaw located in the 

target weld zone with a longitudinal orientation. 

 
Figure 3. Response of the calibration reflector (Hole of 1.6mm diameter) 

 

4.  Weld Inspection POD study 
 

4.1 Methodology 

 

Determination of POD curves via a purely experimental approach requires large-scale 

experiments performed on representative test-blocks containing representative defects. 
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For instance, the Military Handbook 1823a [7] states that a minimum amount of 40 

different defect locations shall exist in the trial mock-ups when a Signal response analysis 

is performed, and this minimum is 60 for a Hit-Miss analysis. Moreover, to be 

representative of a “real POD”, this experiment shall “capture” the variability of the 

influential parameters in real inspections.  

Recently, efforts have been made to fix a recognized methodology for the use of 

numerical simulation to determine POD curves (“MAPOD”) and it is worth mentioning 

practical recommendations published in 2016 by International Institute of Welding [8]. 

The methodology, as described in this document, aims at using a numerical model which 

simulates the results of an inspection to reproduce the impact of the variability of 

influential parameters on the NDE response. The key idea consists in introducing 

variations in the model input parameters which lead to the variability on the output of the 

simulation. This variability is then analysed to calculate a POD curve. The estimation of 

a POD curve by simulation requires:  

• To define a “nominal” configuration, that is all the parameters needed for 

simulating one inspection. From this nominal configuration are derived the 

configurations which will be computed by considering the variability of some 

inputted parameters. At this stage, it is important to carefully check input data to 

avoid any mistakes and this is not an easy task to have a clear and exhaustive list 

for all the relevant parameters. It is also important to adjust the accuracy of the 

model (mesh density, level of accuracy needed for the test piece geometry and 

materials compared to the “real case”) to find a good compromise between results 

accuracy and computation times. Some relevant reference measurements can be 

very useful at this stage to make good choices. 

• To define the characteristic parameter “a” (versus which the POD (a) is 

calculated), 

• To define the “aleatory parameters” whose variability will be taken into account,  

• To assign a statistical distribution to these parameters, 

• To sample the statistical distributions of aleatory parameters and run the 

corresponding simulations,  

• To compute the POD curve from the set of simulated cases. 

 

In this study, the characteristic parameter will be the flaw height. Regarding the variable 

parameters, it is not obvious to define in advance the most relevant ones and to define 

their variability whereas this is the key aspect of a POD analysis. This is where the 

possibility to rely on parametric studies and metamodels is really interesting. Indeed, it 

will let us first select a list of candidate essential variables to assess their impact on our 

outcome. And it is not necessary anymore to postulate a priori a certain variability to run 

the simulations. Instead of this, the range of variation just need to be defined and then the 

user will be able to explore different scenarios with the combined variable parameters 

(i.e., different statistical distributions, different sampling) without launching new 

computations. After this first assessment, the variable list can be reduced for the final 

POD analysis. 

 

4.2 Sensitivity Analysis 

 

For the present research sensitivity analysis, first, a quite long list of 13 potential 

influential parameters has been established: 
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- Target Defect parameters (rectangular planar shape): flaw height, flaw length, 

flaw position in the weld defined by 2 parameters: ligament (vertical distance 

from the backwall) and axial position in the weld volume (which means an 

angular position in the case of a longitudinal weld), flaw orientations (with the 3 

angles that define its orientation: tilt, skew and squint), 

- Specimen parameters: Wall thickness, Pipe Outer Diameter, Shear Waves 

velocity, 

- Inspection parameters: probe position versus the weld centre line (“StandOff”), 

Refraction angle, Squint angle. 

 

To explore the impact of parameters on an outcome, different methodologies are 

available. Exploring them one by one individually while fixing the other parameters to a 

certain value can be a solution but it will ignore any inter-dependencies between these 

variables, the so-called “interactions”. The choice has been to combine them in 

multiparametric DOEs to explore interactions. However, as it is of course necessary to 

include several values of each parameter in the list, it is not possible to include all 

variables in the same computations as it can need a prohibitive number of simulations for 

13 variables. In that way, the choice has been made to divide the study into “smaller” 

DOEs datasets combining 4 to 7 variables together for the sensitivity analysis and also to 

rely on LHS technique, more efficient than a full factorial one to fill the variable 

parameters “input space” and then build a metamodel from the simulated database.  

 

Below is illustrated one of this multiparametric study where 4 parameters have been 

involved in one common LHS DOE made of 400 simulations: 

- Flaw height: from 0.35 mm to 2.1mm, 

- Probe Refraction Angle: from 57° to 63°, 

- Probe Squint Angle: from -5° to +5°, 

- Probe standoff:  from -17.5° to -12.5° in angular position corresponding to a 

variation of 70mm to 50mm of the distance to the weld centreline. 

On Figure 4, a parallel plot illustrates the simulated design of experiment. The 4 first 

columns show the sampling performed for the 4 variables while the last column shows 

the corresponding impact on the outcome which is in this case is the defect response 

ultrasonic signal maximum amplitude. This graph can be a first resource for a sensitivity 

analysis but in this case, the goal is to use the metamodel generated from this simulation 

database.  

 
Figure 4. Parallel plot of the DOE performed on 4 variables with 400 simulations. 
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Before using a metamodel, it is necessary to check its accuracy. To do so, one can rely 

on cross validation techniques that successively compare the results obtained with 

metamodels built from different subsets of the simulation database to the remaining 

partition of this database. It results as “True vs Predicted” graphs that give an overall 

accuracy of the metamodel for a selected interpolator and can also help to track “where” 

(i.e., for which parameters’ values) the metamodel is less accurate. Figure 5 shows the 

accuracy obtained with the Kriging interpolator selected in this case. 99% of the evaluated 

cases have less than 5% discrepancy with the reference simulations, therefore the 

metamodel accuracy is estimated as really good here. 

 
Figure 5. Cross validation technique to estimate metamodel accuracy. 

 

Once validated, you can use the metamodel to analyse parameters impact for any 

parameter’s values combination or assuming any statistical distribution for parameters’ 

variabilities in the bounds of the variation range defined. It corresponds to an infinite 

number of potential inspection scenarios and going from one scenario analysis to another 

one is done in real-time as it just requires interrogating and/or resample the metamodel 

but does not need new simulations. This analysis can rely on different types of graphs: 

1D plot, 2D response surfaces or parallel plots as seen on Figures 6, 7 and 8: 

 
Figure 6. Impact of a refraction angle variation from 57° to 63° on signal amplitude (in dB 

calibrated versus TDH) for a flaw height of 2mm, probe squint of -2° and probe standoff of 60mm. 
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Figure 7. Impact of a refraction angle variation from 57° to 63° and a squint angle variation from  

-5° to +5° on the signal amplitude for a flaw height of 2mm and probe standoff of 60mm. 

 

 
Figure 8. Parallel plot of 1000 inspection scenarios giving the signal amplitude variability (right 

column) assuming a constant flaw height of 2mm (1st column), and gaussian variability laws for 

refraction angle, squint angle and probe standoff (2nd to 4th column) 

 

Another output of the sensitivity analysis is the ability to rank the variable impact thanks 

to the Sobol Indices accounting for parameters variability (defined by probability density 

functions). Concerning the present case, it gives the histogram on the Figure 9 when it is 

assumed a uniform law for the flaw height, and a normal law (with a certain mean and 

standard deviation) for the 3 other parameters. Flaw height, probe standoff and probe 

squint angles are the most influential ones in this case. 

 

Based on the several metamodels performed to study the 13 parameters identified, a 

reduced list of influential parameters has been established for the final inspection 

configuration with only 6 parameters: Flaw height, Flaw positions (ligament and 

“angular” position), probe squint and refraction angles, probe standoff. A parametric 

study has been simulated combining these 6 parameters giving a new metamodel. Another 

sensitivity analysis can be again performed with this new subset of variables. But the 

other interest is that a POD analysis can be extracted very easily from such a metamodel 

in CIVA. 
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Figure 9. Sobol Indices ranking influential parameters (flaw height, probe squint and refraction 

angles, probe standoff) impact on the output signal depending on their variability. 

 

4.3 POD Curves 

 

Different ways exist to build a POD curve. The standard parametric Berens approach will 

be used here (a non-parametric model is also available in CIVA). A POD analysis starts 

by building a dataset where the defect responses obtained for different inspection 

situations are classified versus flaw “true” size (whatever form the defect response is 

recorded: signal amplitudes, Hit, or Miss). Using simulation allows to have no uncertainty 

on the flaw size, as this is one of the input parameters of the model. When using 

metamodels, building this dataset means just asking some samples from the available 

metamodel and therefore it can be resampled on demand for another scenario (i.e., input 

parameters variability) without new simulations if it remains in the bounds of the variation 

range initially defined for the simulation database that built this metamodel.  

 

First, to be representative of the experimental data set available, 300 points are built for 

4 different defect sizes [0.35 mm; 0.7 mm; 1.4 mm; 2.1 mm]. A normal law is assumed 

to describe the variability of inspection parameters (standoff, refraction angle, squint 

angle) around their mean values and a uniform law for the flaws position parameters 

(ligament and angular position). The decision threshold is established versus the TDH 

reference amplitude. A “signal response” POD curve model (or â vs a) has been selected 

because the underlying statistical hypotheses are reasonably fulfilled for this first data set. 

This simulated POD curve is compared to the experimental one (analysed in the 

mh1823POD software [9]) and a good agreement is obtained on the relevant indicator 

a50, a90 (flaw size for which the probability of detection is 50%, respectively 90%) and 

a90/95 (including the 95% confidence band) which gives credit to the model, as show on 

Table 2 and Figure 10. 
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Table 2. POD indicators 

Type of Data 
POD indicators 

a50 (mm) a90 (mm) a90/95 (mm) 

Simulated data  

(300 points with 4 defect sizes) 
1.248 1.88 2.011 

Experimental data  

(300 points with 4 defect sizes 
1.366 1.892 1.961 

 

 

 
Figure 10. Signal Response POD curves based on a metamodel data set of 300 points (on the left) 

and experimental POD curves (on the right). 

 

Even if the total number of points looked sufficient to build a POD curve, the 

experimental data set still suffers from a relative lack of flaw size distribution since only 

4 sizes exist and actually only 3 are in the “interesting” part of the POD curve (the rising 

slope) such that it can still be estimated that a lack of sampling affects the whole accuracy 

of the POD curve. Now that metamodel shows to be reliable, it is easy and immediate to 

generate a new sampling with more flaw sizes. This will give more confidence to this 

curve and will also reduce the confidence band width. Figure 11 shows the POD curve 

with 36 different flaw sizes regularly distributed (in the same interval) and with 75 tests 

per flaw size leading to a data set of 2700 points … at no cost. The indicator a90/95 stays 

close to 2 mm with this new curve, but a more adapted sampling gives more confidence 

to this result. A Hit-Miss parametric POD curve is here selected since the Signal Response 

hypotheses are not fulfilled anymore, as often encountered.  

 

 
Figure 11. Data points (on the left) and Hit Miss POD curve  

based on a metamodel data set of 2700 points. 
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4.4 POD Curves for other scenarios 

 

As the major potential error done in the MAPOD approach comes from the difficulty to 

describe the variability of the uncertain parameters, metamodels resampling feature 

allows to try different plausible scenarios to evaluate how sensitive the POD curve is to 

this uncertainty. It also allows to test inspection conditions that could optimize the flaw 

detectability on the figure 12, a new POD curve is built assuming a better inspection 

system control resulting to a standard deviation divided by 2 for all inspection parameters: 

probe standoff, squint and refraction angles variability. The a90/95 value then decreases 

from 2mm to 1.6mm. 

 
Figure 12. Data points and Hit Miss POD curve with less variability on the inspection parameters. 

 

In the case of the multichannel AUT system, it is possible to include in the same analysis, 

the observations coming from the evaluated channel as well as its “adjacent” channels as 

they may also detect the flaws in the targeted zone. Here, L3 channel data has been added 

to the L7 one, and the maximum obtained between both channels (for the considered 

defects distribution in L7 zone) is kept assessing the detectability. In Figure 13, the red 

crosses correspond to the situation where L3 detects flaws with a higher amplitude than 

the L7 channel. Even if this might not be a sign of a well-suited inspection set-up in this 

case, a lot of flaws are actually better detected by L3, and a90/95 decreases from about 

2mm to 1.3mm! 

 
Figure 13. POD curve with L7 and L3 channels response 
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5.  Conclusions 
 

Modelling can greatly help reliability studies because it provides an efficient way to 

generate and explore many inspection and defect scenarios at low cost compared to a 

purely experimental approach based on mock-up tests. The availability of metamodels 

further enforces the ability to generate large enough sample sizes for statistical confidence 

and analyse deep degradation factors or optimization solutions. To allow quantitative use 

of such solutions, validation references and a controlled methodology must be considered. 

This paper has illustrated such type of reliability study for an AUT Inspection of 

longitudinal weld on carbon steel pipes with the simulation software CIVA. 
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